
 - 1 -

Using the RedRat API in .NET Applications

Chris Dodge – RedRat Ltd

01 February 2008

For the RedRat SDK V2.06

 - 2 -

INTRODUCTION 5

PREREQUISITES AND SDK INSTALLATION 5

APPLICATION DEVELOPMENT AND DEPLOYMENT USING THE SDK 5

SDK Versions 5

Runtime Versions 5

THE OBJECT MODEL OVERVIEW 6

AN INTRODUCTION TO REMOTE CONTROL SIGNALS 6

Modulated Remote Control Signals 7
Layer 1 – Main and Repeat Signals 7
Layer 2 – Signal Envelope 7
Layer 3 – Carrier/Modulation Frequency 7

IrDa-Like Signals 8

USING THE REDRAT API 8

Overview of the RedRat3s Functionality 8

Example Code Using the TestRemote Application 9
Finding a RedRat3 9
Discovering Information about the RedRat 10
IR Signal Input – Learning Mode 11
Outputting a Remote Control Signal 13
Program Termination 13

Using a Signal Database - The SignalDecoder Example Application 14
Loading a Signal Database 14
Using the Database to Decode Signals 15
More About Handling Incoming Remote Control Signals 16
Database Signal Lookup for Output 17

ADDITIONAL INFORMATION FOR THE DEVELOPER 18

Concurrency 18

PC Power Modes 18
Standby-Mode 18
Hibernation 19

 - 3 -

API DETAILS 19
Interface RedRat.IRedRat 19
event EventHandler LearningSignalIn; 19
event EventHandler RCDetectorSignalIn; 19
DeviceInfo DeviceInformation { get; } 19
LocationInfo LocationInformation { get; set; } 19
string FirmwareVersion { get; } 19
void Blink() 19
void GetModulatedSignal(int timeout) 19
void CancelSignalInput() 20
void OutputModulatedSignal(ModulatedSignal outSig) 20
void OutputModulatedSignal(ModulatedSignal outSig, bool
cacheData) 20
double EndOfSignalTimeout { get; set; } 20
int LengthMeasurementDelta { get; set; } 20
int ModFreqPeriodsToMeasure { get; set; } 20
double LengthToMilliSec(uint length) 20
uint MilliSecToLength(double millis) 20
ushort ModFreqToVal(double modFreq) 20

Interface RedRat.RedRat3.IRedRat3 21
int MaxNumLengths { get; set; } 21
int SignalMemorySize { get; set; } 21
void OutputIrDaPacket() 21
bool RCDetectorEnabled { get; set; } 21
bool RCInputOneShot { get; set; } 21

Class RedRat.USB.USBDevice 21
public static USBDevice GetInstance(String devName) 21
public void CloseDriver() 22
public string DeviceName { get; } 22
public USBDeviceInfo DeviceInformation { get; } 22
public void Reset() 22

Class RedRat.RedRat3.USB.USBRedRat3Impl 22
public static string[] FindRedRat3s() 22
public static new RedRat3USBImpl GetInstance(String devName) 22

Class RedRat.SignalEventArgs 22
public SignalEventAction Action { get; } 22
public IrDaPacket IrDaPacket { get; } 22

public ModulatedSignal ModulatedSignal { get; } 22
public Exception Exception { get; } 23

Enumeration SignalEventAction 23
MODULATED_SIGNAL 23
IRDA_PACKET 23
EXCEPTION 23
RC_DETECTOR_ENABLED 23
RC_DETECTOR_DISABLED 23
SIGNAL_ADDED 23
SIGNAL_REMOVED 23
SIGNAL_UPDATED 23

Class RedRat.DeviceInfo 23
public string Company { get; } 23

Class RedRat.USB.USBDeviceInfo 24

 - 4 -

public string ProductName { get; } 24
public VersionInfo ProductVersion { get; } 24
public string SerialNo { get; } 24
public uint SerialNumberAsUint { get; } 24
public ushort VendorID { get; } 24
public ushort ProductID { get; } 24

Class RedRat.LocationInfo 24
public string Name { get; set; } 24
public string Description { get; set; } 24

Class RedRat.RedRat3.RedRat3LocationInfo 24
public uint SerialNo { get; } 24

Struct RedRat.Util.VersionInfo 24
public uint Major { get; } 25
public uint Minor { get; } 25

Class RedRat.IR.IRPacket 25
public string Name { get; set; } 25
public string Description { get; set; } 25
public byte[] UID { get; } 25
public static bool UIDCompare(byte[] uid1, byte[] uid2) 25

Class RedRat.IR.ModulatedSignal 25
public const int EOS_MARKER 25
public double ModutationFreq { get; set; } 25
public double[] Lengths { get; set; } 25
public byte[] SigData { get; set; } 25
public int NoRepeats { get; set; } 26
public double IntraSigPause { get; set; } 26

Struct ToggleBit 26
Class RedRat.RedRat3.RedRat3ModulatedSignal 26
Class RedRat.IR.IrDaPacket 27
Class RedRat.IR.IrDaPacket.SubPacket 27
Class RedRat.RedRat3.RedRat3IrDaPacket 27
Class RedRat.IR.ProntoModulatedSignal 27
Class RedRat.AVDeviceMngmt.AVDeviceDB 27
Class RedRat.AVDeviceMngmt.AVDevice 28
Class RedRat.AVDeviceMngmt.SignalKey 29

 - 5 -

Introduction
Many PC applications that deal with media, media management or home automation tasks require

infrared remote control input and output. RedRat products have been designed for use in such

applications. This document describes the APIs available for use by application developers.

The RedRat API is provided as a .NET assembly (dll), making development in the .NET environment

straightforward. There is also a COM interface on top of the .NET assembly to support VB6 and

VC++6 development – please see the document “RedRat COM API”.

From version 1.10 onwards, the SDK also supports the RedRat4, sold under the product name ir	etBox

- a networked, multi- IR output device. Although the RedRat4 API is very similar to that of the

RedRat3, details have not been yet been included in this documentation.

Prerequisites and SDK Installation

• The .NET Framework 2.0 and development environment (SDK, VisualStudio .NET or other).

• The RedRat SDK – download from http://www.redrat.co.uk/SDK

• RedRat hardware. This is actually optional, but only minimal application testing will be

possible without hardware. To use this SDK, you need version 0.14 or newer of the RedRat3

firmware. If you want to use IrDa-like signal output functionality, you will need version 0.17 or

later of the firmware.

Application Development and Deployment Using the SDK
The SDK is intended for use by application developers, but once an application is to be released the

developer can use the RedRat runtime to distribute with their application.

SDK Versions
Only one version of the SDK can be installed on machine at one time. Any versions of the SDK

previous to 1.00 require a manual uninstall to remove them prior to installing a new version. From

version 1.00 onwards, and new SDK should automatically remove previous versions on install.

Runtime Versions
An application developed with an SDK version has to be distributed the runtime of the same version

number for correct operation. If this is not done, then the user will typically receive an error message

stating that the .NET assembly file of correct version cannot be found.

As RedRat users may have several applications developed with the SDK on their machine, from

version 1.00 onwards, multiple versions of the RedRat runtime can be simultaneously installed on a

machine. Prior to version 1.00 only one version of the runtime could be installed at a time.

The so-called “side-by-side” installation is the .NET mechanism for overcoming “dll hell” whereby a

new dll with an incompatible API could overwrite an older version, possibly stopping some older

programs from working.

 - 6 -

The Object Model Overview

<<IRedRat>>

<<IRedRat3>>

RedRat3USBImpl

USBDevice

1

1

1 1

DeviceInfo

USBDeviceInfo

LocationInfo

RedRat3LocationInfo

IRPacket

IrDaPacket ModulatedSignal

RedRat3ModulatedSignal

AVDevice * 1

AVDeviceDB
*

*

RedRat3IrDaPacket

Figure 1. Overview of RedRat Object Model.

The model has been designed to support all RedRat infrared input and output devices, so may look a

little more complex than necessary, however it is not difficult to use. Where possible try to use the top

level interface, e.g. IRedRat instead of IRedRat3.

RedRat3USBImpl is the main object with which the application developer will interact. As the RedRat3

is a USB device, a lot of its hidden behaviour is as a USBDevice, i.e. it inherits USB data marshalling

and interaction code from the USBDevice object. However, most of the time one is just interested in

using it as an object of type IRedRat3, that is the IR I/O facilities.

The AVDeviceDB and AVDevice objects are for representing audio/visual devices, which is a useful

way of managing collections of IR signals supporting exchange, centralized DBs and signal decoding.

An Introduction to Remote Control Signals
Although it is not necessary to understand a great deal about remote control signals to develop

applications using RedRat products, some information on IR signals may make aspects of the API

clearer, especially objects that represent the signals.

 - 7 -

Modulated Remote Control Signals
The vast majority of remote control signals are in this family, having a carrier wave usually (though not

always) in the frequency range 36kHz to 40kHz. Figure 2 shows the layers in such a signal. The RedRat

does not attempt to interpret or discover the coding scheme used in the signal (e.g. shift/biphase coded,

space coded, RC5, RCMM, REC-80 etc.) as knowledge of this is not needed for recognition or

reproduction.

1

2

3

Main signal Repeat signal
P

L1 L2 L3

Figure 2. Layers in a Modulated Remote Control Signal.

Layer 1 – Main and Repeat Signals

These two sections to a signal are most commonly used to indicate the duration of a button press on a

remote; the main signal being sent once and the repeat signal sent repeatedly until the button is released.

There are of course variations, such as a 3 part signal (button down, hold and release) or repeating the

whole main/repeat section. The value P is the inter-packet pause length.

Layer 2 – Signal Envelope

This is the basically the sequences of pulses and gaps that carry the signal information. When the

RedRat samples the signal, it builds up an alphabet of the lengths of the pulses and gaps, L1, L2, L3 etc.

The actual signal data is then a series of numbers which are a lookup into the length array, i.e. 123333

is a sequence of length 1, length 2, length 3, length 3 etc.

Layer 3 – Carrier/Modulation Frequency

Each IR pulse is actually a rapidly switching signal, usually around the 36kHz to 40kHz allowing

detectors to filter out background IR from this signal, so giving good transmission range and reliability.

Standard remote control detectors strip out the carrier frequency and in doing so also alter the actual

length values. This does not impact signal recognition, but in many cases are not sufficiently accurate

for reliable reproduction. The RedRat samples the raw signal, giving accurate L values and a good

measurement of the carrier frequency.

 - 8 -

IrDa-Like Signals
Some set-top boxes use an IrDa-like remote control transmission protocol which offers some

advantages over the modulated signal type described above, such as a higher data rate, supporting

multiple handsets and timestamping signals. Figure 3 shows part of such a signal, comprising a series of

sub-packets (15 at least) separated by quite large gaps.

Sub-packet 1 Sub-packet 2 Sub-packet 3

Figure 3. Part of an IrDa-like Signal

Figure 4. Sub-packet structure of an IrDa-like Signal.

Each sub-packet is a series of very short pulses (a couple of uS) with varying separation. Figure 4

shows the structure of the first two sub-packets of an signal, the large inter-sub-packet pause having

been removed and replaced by the black vertical lines.

From firmware V0.17 and SDK V0.17 the RedRat3 can output IrDa like signals.

Using the RedRat API

Overview of the RedRat3s Functionality
The RedRat3 is designed to be a universal remote control input/output device for the PC, meaning that

it has the ability to:

1. Output infrared remote control signals

2. Accurately record or Learn remote control signals for reliable output. This uses a short range

IR detector (1 to 2m) and gives full information about the input signal.

 - 9 -

3. Detect remote control signals from long range (10m or more), which allows control of the PC

with any remote control. The data that is input from this detector is not generally accurate

enough for reliable output of the signal.

The application developer has to clearly understand the difference between points 2 and 3 above, i.e. all

data collected for signal output has to come from the learning detector. In fact, it is recommended that

all databases of signal data collected for either recognition or output purposes are input through the

learning detector.

Input signals are passed from the RedRat dll up to application code via events. In general, the

application will setup event delegates to wait for incoming signals, the application code then responding

appropriately when they arrive. The incoming signal events do not contain just IR signal data, but may

also contain other information, such as an exception raised by the hardware or the fact that a detector

has been disabled from elsewhere in the program. There are subtle differences in the way the incoming

signals from the two detectors should be handled, which is discussed in the examples below.

Each RedRat3 has a serial number, which can be used by application programs to identify a particular

RedRat3 in the situation where there is more than one attached to a computer (or on a network). There

is support in the RedRat dll for the association of additional descriptive information with a serial

number, the information being stored in the registry, keyed under the RedRat3 serial number. This

allows the application code to find a RedRat3 using some meaningful name, such as LivingRoom,

HiFiControl etc.

Example Code Using the TestRemote Application

Use of the RedRat API is demonstrated here using the

TestRemote sample delivered as part of the SDK. TestRemote

is a very basic graphical remote control in which program

complexity has been kept to the minimum, but it exercises

most of the RedRat3s functionality.

It displays a set of buttons, each of which can have a name

and remote control signal associated with it.

Finding a RedRat3

 protected void OpenRedRat3() {
 try {
 // Find the no. of RR3s connected.
 string[] devices = RedRat3USBImpl.FindRedRat3s();
 if (devices.Length > 0) {

 // Just take the first device found.
 IRedRat3 redRat3 = RedRat3USBImpl.GetInstance(devices[0]);

 - 10 -

 } else {
 MessageBox.Show("No RedRat3 devices found.", " Warning",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 }

 } catch (Exception ex) {

 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);

 }
 }

The method RedRat3USBImpl.FindRedRat3s() returns a list of all RedRat3s found, and they have

devices names “RedRat3-0”, “RedRat3-1” etc. In the TestRemote application, we only take the first

RedRat3 found.

These RedRat3 device names are not guaranteed to be the same each time the computer is started, so

the RedRat3 serial number or other information in the LocationInfo object should be used in

applications which may have to deal with situations where more than one RedRat3 may be present. The

following code (not from TestRemote) shows how this can be accomplished:

 public IRedRat LookupRedRat(string redRatName) {
 if (redRatName != null) {
 string[] devices = RedRat3USBImpl.FindRedRat3s();
 for (int i=0; i<devices.Length; i++) {
 IRedRat3 rr3 = RedRat3USBImpl.GetInstance(devices[i]);
 if (rr3.LocationInformation.Name.Equals(redRatName)) {
 return rr3;
 }
 }
 throw new Exception(“No RedRat with name: ” + redRatName);
 }

// Only return null if null name passed.
 return null;
 }

Discovering Information about the RedRat

The RedRat3 Info box under the Help menu item of TestRemote prints in a very simple fashion

information about the RedRat3 as shown below:

This is done with the following code:

 // Obtain and display info about the RR3.
 string msg = null;
 if (redRat3 == null) {
 msg = "No RedRat3 connected.";
 } else {
 // Obtain information from RR3 to display....

 - 11 -

 USBDeviceInfo info = (USBDeviceInfo)redRat3.DeviceInformation;
 StringBuilder sb = new StringBuilder();
 sb.Append(info.ToString() + "\n");
 sb.Append("Hardware Version: " + info.ProductName + "." +

info.ProductVersion + "\n");
 sb.Append("Firmware Version: " + redRat3.FirmwareVersion);
 sb.Append("\nSerial Number: " + info.SerialNo);
 sb.Append("\nLocation: " + redRat3.LocationInformation);
 msg = sb.ToString();
 }
 MessageBox.Show(msg, "RedRat3 Info.", MessageBoxButtons.OK,

MessageBoxIcon.Information);

Information about the physical USB hardware is returned by the IRedRat.DeviceInformation

attribute. Firmware version information is read directly from the RedRat3 using the

IRedRat.FirmwareVersion attribute, and finally information about the physical position is returned in

a LocationInfo object returned by the IRedRat.LocationInformation attribute.

IR Signal Input – Learning Mode

The aim here is to learn an IR signal for output at a later stage. Being event driven, it is slightly more

complex than the above examples, but is somewhat more elegant and perhaps easier to use than a non-

event driven approach, which would put the onus of multithreaded code development on the developer.

In TestRemote, an IR signal is learnt from the button properties dialog box (ButtonPropertiesDialog),

which pops up when the user clicks on a button with the right mouse button:

When the Learn IR button is clicked, the following actions need to be taken:

1. Tell the RedRat3 to enable IR signal input from the learning detector

2. Create an event delegate and add to the RedRat3 instance.

3. Create a method of terminating the signal input in case the user wants to cancel this action, such

as a cancel dialog box.

These steps are shown in the code below:

// Tell the RR3 we want to learn a demodulated signal (no timeout)
rr3.GetModulatedSignal(0);

// Create modal dialog that allows us to cancel the operation
// if required.
signalInputDialog = new SignalInputDialog(rr3);

 - 12 -

// The dialog box has to handle the input signal event from the RR3.
rr3.LearningSignalIn += new EventHandler(signalInputDialog.SignalDataIn);

// Popup dialog.
System.Windows.Forms.DialogResult dialogRet =

signalInputDialog.ShowDialog(this);

Note that the event delegate is a method in the SignalInputDialog. This does not have to be the case, but

it allows a simple method of managing the modal SignalInputDialog box, either the user presses the

Cancel button in the box, or an input signal event arrives, and in both cases the SignalInputDialog

closes itself and returns control to button editor dialog.

In the dialog box, the following code is the actual event delegate:

 public void SignalDataIn(object sender, EventArgs e) {

 // The event sent from the RR3 could mean one of three things:
 // i) We have an input IR signal
 // ii) The signal input has been cancelled (send via exception)
 // iii) There has been some error in signal input (also an exception)
 if (e is SignalEventArgs) {

 SignalEventArgs siea = (SignalEventArgs)e;

 if (siea.Action == SignalEventAction.EXCEPTION) {
 // Means that we have had an error....
 irInEx = siea.Exception;
 if (cancelled) {
 // Signal input cancelled (cancelled flag set when Cancel
 // button pressed).
 DialogResult = DialogResult.Cancel;
 } else {
 // Some other error
 DialogResult = DialogResult.Abort;
 }

 } else if (siea.Action==SignalEventAction.MODULATED_SIGNAL) {

 // Great - have an IR signal.
 irPacket = siea.ModulatedSignal;
 DialogResult = DialogResult.OK;
 }
 }
 // Hide the dialog, i.e. return control back to the caller.
 this.Hide();
 }

The SignalEventArgs object can indicate several things, using the Action property. The code above

checks for an exception or actual IR signal data. A point to note is that an exception can have two

causes:

1. Some error in the signal capture, e.g. not enough memory required allocated in the RedRat3.

2. The signal input has been terminated. The code checks for this using the cancelled flag which

is set when the user presses the “Cancel” button in the dialog box.

To complete the operation, control is returned to the caller (ButtonPropertiesDialog), which checks the

dialogRet result as follows:

 // Have input IR data of some kind...
 if (dialogRet == DialogResult.OK) {
 irPacket = signalInputDialog.IRPacket;
 changed = true;
 }

 // We have had some error from the RedRat3 or comms with it,

 - 13 -

 // so read exception and throw it.
 else if (dialogRet == DialogResult.Abort) {
 throw signalInputDialog.InputException;
 }

 // The user has pressed cancel, so don’t do anything.
 else if (dialogRet == DialogResult.Cancel) {
 }

 } catch (Exception ex) {
 // Had an exception, from RR3 or elsewhere, so show to user.
 string msg = ex.Message;
 if (ex.InnerException != null) { msg += ": " + ex.InnerException.Message; }
 MessageBox.Show(msg, "Communication Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 }
 finally {
 // Remove listener and dispose of the dialog box.
 if (signalInputDialog != null) {
 rr3.LearningSignalIn -= new EventHandler(signalInputDialog.SignalDataIn);
 signalInputDialog.Dispose();
 }
 }

The finally section is important here as it ensures that whatever the result, the SignalDataIn event

delegate is removed and the SignalInputDialog disposed of.

Outputting a Remote Control Signal

This operation is very straightforward given a ModulatedSignal object:

try {

 // Send the ModulatedSignal object to the RR3
 redRat3.OutputModulatedSignal((ModulatedSignal)irPacket);
 } catch (Exception ex) {

 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);

 }

The above code simply shows outputting a signal via a RedRat3, and showing an error to the user if an

exception is raised in the process. A couple of points to note are:

1. The exceptions returned from the RedRat3 object contain quite technical information, so are not

necessarily suitable for direct presentation to the user as shown.

2. The object being used is irPacket (of type IRPacket) which is cast to an object of type

ModulatedSignal before use. This may seem a little unnecessary; why not just use

ModulatedSignal objects through the code? The main reason is that there will be at least one

other type of IRPacket – IrDaPacket which is a different kind of remote control signal.

Program Termination

When a program is closed by the user, RedRat resources should be released so that RedRat hardware is

left in a state easily usable by other applications. The two steps to be taken are:

1. Unregister any event delegates in the main program that are attached to RedRat event sources.

2. Call the method RedRat3USBImpl.DisposeOfAll(), for example in the Dispose() method of a

Windows application.

It is advisable to do order the operations above as given as the DisposeOfAll() method may cause events

to be sent from the RedRat code, which in turn will raise an exception if send to a windows form which

is being disposed of.

 - 14 -

Using a Signal Database - The SignalDecoder Example Application
Using a database of IR signals from several audio-visual devices (the AVDeviceDB object) can greatly

simplify application development as it provides simple lookup and reference of signals,

recognition/decoding of incoming signals and allows straightforward signal storage and exchange.

This application is designed primarily to show using the signal decoding facilities in the .NET assembly

to recognize incoming IR signals and use them to control applications on the PC. At the end of the

chapter is some sample code showing how to lookup signals in a signal database for output.

To be able to recognize and decode signals, they must all have been learned and stored in a signal

database. It can be downloaded from the RedRat web site at: http://www.redrat.co.uk/Util/SignalDBUtil

and should be used to create a signal database for any remotes you would like to use to control PC

applications.

The SignalDecoder application puts up a single window as shown in Figure 5 which is to be moved

around the screen with a remote control.

Right-clicking on the body of the window will bring up a menu item to allow the user to choose a signal

database, which is then loaded. When the appropriate buttons on a remote are pressed when pointed at a

RedRat3, the window will be moved up, down, left or right, depending on which buttons were pressed.

Figure 5. Main window of Signal Decoder Application

Setting up which buttons cause what actions is described in detail below.

Loading a Signal Database

 // Read signal database from XML file.
 AVDeviceDB newAVDeviceDB;
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter = "XML files (*.xml)|*.xml|All files (*.*)|*.*";
 openFileDialog.RestoreDirectory = true ;

 if (openFileDialog.ShowDialog() == DialogResult.OK) {
 string fName = openFileDialog.FileName;

 XmlSerializer ser = new XmlSerializer(typeof(AVDeviceDB));
 FileStream fs = null;
 try {
 fs = new FileStream((new FileInfo(fName)).FullName, FileMode.Open);
 newAVDeviceDB = (AVDeviceDB)ser.Deserialize(fs);

 } catch (Exception ex) {
 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 } finally {

 - 15 -

 fs.Close();
 }

The code above shows loading the signal database from an XML file to create an object of type

AVDeviceDB. This object contains multiple AVDevice objects, each one representing a particular piece

of AV equipment or remote.

Using the Database to Decode Signals

To obtain signals from a RedRat3, one needs to be discovered and an input signal event handler setup in

a similar fashion to that described in the TestRemote example. The difference is that the event handler

has to be hooked up to the RCDetectorSignalIn event and the RC detector enabled as shown below:

 // Setup inputting signals from the RC detector.
 rr3.RCDetectorSignalIn += new EventHandler(RCSignalInEventHandler);
 rr3.RCDetectorEnabled = true;

 // Application code here…

 // Tidy up on program termination.
 rr3.RCDetectorSignalIn -= new EventHandler(RCSignalInEventHandler);
 rr3.RCDetectorEnabled = false;

The SignalDecoder example includes a full event handler for signals from the RC detector, which isn’t

listed here in full, instead we jump straight to the important code as far as signal decoding is

concerened:

 case SignalEventAction.MODULATED_SIGNAL:
 if (avDeviceDB != null) {
 // Decode signal if have DB.
 try {
 SignalKey sigKey = avDeviceDB.DecodeSignal(siea.ModulatedSignal);
 MoveWindow(sigKey);
 } catch (Exception ex) {
 Console.WriteLine(ex.Message + "\n" + ex.StackTrace + "\n");
 }
 }
 break;

This code section is part of a switch statement in the incoming signal event delegate, and if the

incoming information is a ModulatedSignal (as opposed to an exception or some other notification),

then the signal is passed directly to the AVDeviceDB object for decoding using the DecodeSignal()

method call.

The DecodeSignal() methods returns a SignalKey object which contains information identifying the

signal. In this example, it is passed to the MoveWindow() method to change the position of the window

on the screen.

 // Only want to respond to buttons on remote "CD"
 if (sigKey.AVDevice.Name.Equals("CD")) {

 if (sigKey.Signal.Name.Equals("Play")) {
 // Move down
 AdjustStepSize(Direction.DOWN);
 curLoc.Y += (int)stepSize;

 // If window moves off screen, move back onto other side
 if (curLoc.Y > workingScreenSize.Height) {
 curLoc.Y = 0;
 }
 ...

 - 16 -

Using the SignalKey object is quite simple. We first look to check that it’s the remote we want to

respond to, then we check for the signal name. It is also possible use the signal UID to check for a

recognized signal.

More About Handling Incoming Remote Control Signals

If you are developing an application that uses incoming remote control signals to initiate actions on the

computer, then this section gives in-depth information on how the RedRat code manages the signals. By

understanding this, the developer can give their application smooth and intuitive behavior when

responding to remote control signal input.

The problem to be solved is the following. When reading incoming signals from the RedRat3, the

action that each signal initiates on the computer cannot take too long or the RedRat will miss part or all

of the next signal. (The RedRat does not have sufficient memory to queue signals internally.) The

application developer may want to initiate a complex or protracted set of actions in response to a signal

event and so cannot (and should not have to) complete these actions within the time between signals.

Typically, the delay between a signal and its repeat on an prolonged remote control button press is

around 30 to 150ms.

One approach would be to ignore all incoming signals until the signal event processing has completed.

In practice however, even when the event processing takes less time than the gap between signals, OS

scheduling of other tasks frequently results in an insufficient response time for reading incoming

signals. Running the whole of the signal event dispatching mechanism (plus whatever actions it

initiates) at high-priority is not appropriate use of the computer’s resources.

The actual solution is shown in Figure 6. Reading signal data from the RedRat is decoupled from the

signal event dispatching using a FIFO queue. The RedRat read thread runs at high priority, doing very

little work so consumes no noticeable CPU resources, but reads pretty much 100% of incoming signals.

Consuming the signal events by the application can take as long as required, and even though it may

lead to a build up of signals to be processed, no data will not be lost.

Signal

Queue FIFO

Incoming
signals put in

queue

RedRat
signal input

thread

(high priority)

Signal read
from queue
and sent via
events

Signal event
dispatcher

thread

sig 4
sig 5
sig 6

sig 7

sig 8

Figure 6. FIFO queue for signal input from the RedRat3 remote control detector.

 - 17 -

The following code, when used in the event handler for RC signal input events, prints out the size of the

signal queue and then processes each event very slowly by sleeping for 400ms each time.

 case SignalEventAction.MODULATED_SIGNAL:
 Console.WriteLine("Have signal. Queue size is: " + siea.QueueSize);
 Thread.Sleep(400);
 break;

In some situations, one will want to process the signal backlog as long as it isn’t too large, for example

when the user is pressing Vol+ or Vol- on the remote. In other situations, one does not want to process

the backlog. A good example is when “Skip Forward A Track” is pressed on a remote that is used to

control a media player on a PC. A typical button press will result in several signals being sent, however

acting on all these signals will cause the media player to jump several tracks. In this case, the

application should clear the queue once it has moved on one track as shown below:

 // Only want to respond to buttons on remote "CD"
 if (sigKey.AVDevice.Name.Equals("CD")) {

 if (sigKey.Signal.Name.Equals("Skip+")) {

 mediaPlayer.NextTrack();
 Thread.Sleep(500);
 if (sender is IRedRat3) {
 // Clearing the queue.
 ((IRedRat3)sender).ClearRCSignalInQueue();
 }
 }
 }

When the instruction to skip forward a track is received, this action is carried out on the media player,

and then a pause is inserted for half a second. Following the pause, all signals are cleared from the

queue. This code thus gives the intuitive control when moving through the play list, i.e. rapid discrete

button presses steps forwards or backwards quickly, but an extended button press won’t accidentally

shoot them to the end of the play list.

If a high level of custom or adaptive control is needed, then as each signal event is also given a

timestamp on signal input, this can be used to give information such as the absolute time between

successive signals.

Database Signal Lookup for Output

The example code below is not from the SignalDecoder example, but shows how to obtain a particular

signal from the signal database for output.

 ModulatedSignal sig = (ModulatedSignal)avDeviceDB.GetIRPacket("CD", "Pause");
 rr3.OutputModulatedSignal(sig);

Instead of a device and signal name, a UID can also be used to lookup a signal:

 ModulatedSignal sig = (ModulatedSignal)avDeviceDB.GetIRPacket(uid);

 - 18 -

Additional Information for the Developer

Concurrency
From version 0.12 of the SDK (requiring version 0.14 or greater of the RedRat3 firmware) it is possible

for multiple programs on a PC to simultaneously use a RedRat3. RedRat3 use by multiple threads in a

single program has also been greatly improved.

There are three main operations that the RedRat3 performs:

1. Learn Signal - Learn a new remote control signal (using the short-range detector).

2. Output Signal - Output a remote control signal to control A/V equipment.

3. Input Signal - Collect IR signals from remotes for PC control applications (using the long-

range remote control detector).

If two or more threads/processes attempt the same operation, the behavior is shown in Table 1.

Table 1. Behavior when two or more threads/process simultaneously perform the same operation on a

RedRat3

 Thread/Process One Thread/Process Two

Learn Signal Has exclusive access to the RR3

until signal has been input or

action cancelled. This can be a

long-lived operation.

Waits until process one is

finished then gets exclusive

access to the RR3.

Output Signal Has exclusive access to the RR3

until output is completed.

Usually a short-lived operation.

Waits until process one is

complete then gets exclusive

access to the RR3.

Input Signal Exclusive access to the RR3.

This may be indefinite,

depending on the application.

Throws an exception informing

the user that another

thread/process has ownership of

remote control signal input.

If two or more threads/process attempt different operations simultaneously, then the three operations are

prioritized according to the list above, leading to the following rules:

1. If a thread/process is learning a signal, any signals to be output have to wait and input from the

long-range detector is suspended until the signal learning has been completed or cancelled.

2. While the RedRat3 is outputting a signal, input from the long-range remote control detector is

suspended until the signal output is complete.

PC Power Modes

Standby-Mode

When a computer enters standby mode, the RedRat3 is suspended, going into a low-power state. If the

long-range remote control detector is enabled at when standby mode is requested, then the RedRat code

will disable the detector and re-enable it when it comes out of standby. The application developer may

therefore see a couple of additional RC detector enable and disable events.

 - 19 -

Hibernation

Currently the device driver does not support hibernation mode. When the computer comes out of

hibernation, the device driver will not re-enumerate the USB RedRat devices, so any RedRat3s are not

discovered. Unfortunately the only way to reset the RedRat3 is to unplug it and plug back in. We hope

to fix this at some point in the future.

API Details

Interface RedRat.IRedRat

Describes functionality common to RedRat infrared I/O devices. More specific interfaces extend this

interface where necessary, for e.g. the RedRat has additional functionality, so IRedRat is extended by

IRedRat3.

eventeventeventevent EventHandler LearningSignalIn; EventHandler LearningSignalIn; EventHandler LearningSignalIn; EventHandler LearningSignalIn;

Event for incoming signal data from the short range, learning infrared data detector. The

signature of the event delegate is standard (i.e. public void SignalDataIn(object sender,

EventArgs e)) but the EventArgs object is of type SignalEventArgs. See the

GetModulatedSignal() method for more information on setting up learning signal input.

eventeventeventevent EventHandler RCDetectorSignalIn; EventHandler RCDetectorSignalIn; EventHandler RCDetectorSignalIn; EventHandler RCDetectorSignalIn;

Event for signal data from the long range remote control detector. The details of the event are

the same as for the LearnignSignalIn event.

Please 9ote: The signal data returned from this event is not suitable for IR signal output as it

does not contain complete signal information. To collect data for signal output, please use the

“learning” detector.

DeviceInfo DeviceInformation { DeviceInfo DeviceInformation { DeviceInfo DeviceInformation { DeviceInfo DeviceInformation { getgetgetget; }; }; }; }

Returns information about the physical device. Each type of physical device has a different set

of non-overlapping descriptive properties (e.g. a COM port has a different set of descriptive

information to a USB port), so the actual subclass returned depends on the physical device type.

For example, the RedRat3USBImpl object returns USB device information – a USBDeviceInfo

object.

LocationInfo LocationInformation { LocationInfo LocationInformation { LocationInfo LocationInformation { LocationInfo LocationInformation { getgetgetget; ; ; ; setsetsetset; }; }; }; }

Returns information about the physical position of the device. This is intended for use in

applications where multiple RedRats may be used, to support presenting readable information

to the user on which RedRat is being used and where it is. This information is stored in the

registry, and for the RedRat3 is keyed on the device’s serial number.

stringstringstringstring FirmwareVersion { FirmwareVersion { FirmwareVersion { FirmwareVersion { getgetgetget; }; }; }; }

Attribute returning the version of the firmware running on the device in a readable form.

voidvoidvoidvoid Blink() Blink() Blink() Blink()

Both RedRat2s and RedRat3s have a red LED to give visual feedback of events, e.g. signal

output. This method call blinks this red LED.

voidvoidvoidvoid GetModulatedSignal(GetModulatedSignal(GetModulatedSignal(GetModulatedSignal(intintintint timeout) timeout) timeout) timeout)

Initiates input of a modulated IR remote control signal from the learning remote control

detector. This method does not block, i.e. returns immediately - the actual signal is returned via

the LearningSignalIn event.

 - 20 -

The timeout (ms) parameter can be set if the application should only wait a certain amount of

time before terminating learning signal input. If the timeout period is reached, the RedRat will

no longer responding to IR signal input, and an event is sent to all LearningSignalIn event

delegates informing them of input termination. A value of <0 can be passed for an indefinite

timeout. Also see CancelSignalInput() for a programmatic method of terminating signal

input.

voidvoidvoidvoid CancelSign CancelSign CancelSign CancelSignalInput()alInput()alInput()alInput()

If the application is waiting for input from the learning IR detector, then this method will cancel

the input mode. All listeners are informed of the cancellation in the SignalEventArgs object in

the LearningSignalIn event.

voidvoidvoidvoid OutputModulatedS OutputModulatedS OutputModulatedS OutputModulatedSignal(ModulatedSignal outSig)ignal(ModulatedSignal outSig)ignal(ModulatedSignal outSig)ignal(ModulatedSignal outSig)

Given a modulated signal object (e.g. from a DB or previously captured from the learning IR

detector), then this method call will output it via this device.

voidvoidvoidvoid OutputModulatedSignal(ModulatedSignal outSig, OutputModulatedSignal(ModulatedSignal outSig, OutputModulatedSignal(ModulatedSignal outSig, OutputModulatedSignal(ModulatedSignal outSig, boolboolboolbool cacheDat cacheDat cacheDat cacheData)a)a)a)

Given a modulated signal object (e.g. from a DB or previously captured from the learning IR

detector), then this method call will output it via this device. Each time a signal is output, the

data for transfer is constructed, so by default the constructed data is cached. For situations when

caching is not wanted, it can be disabled for the signal with the cacheData parameter.

doubledoubledoubledouble EndOfSignalTimeout { EndOfSignalTimeout { EndOfSignalTimeout { EndOfSignalTimeout { getgetgetget; ; ; ; setsetsetset; }; }; }; }

Gets and sets the value for the IR dead period at the end of a signal used by the RedRat to

determine the end of a signal. Units are in ms. Please see the IR Signal Details document for an

in-depth explanation. The default value is currently 150ms.

intintintint LengthMeasurementDelta { LengthMeasurementDelta { LengthMeasurementDelta { LengthMeasurementDelta { getgetgetget; ; ; ; setsetsetset; }; }; }; }

The RedRat uses a set of lengths as the alphabet used to represent most IR signals. Due to the

approximate nature of IR signal data, two supposedly identical values will be slightly different.

This attribute controls the size of the length “fuzz”, i.e:

if ((length1 - length2 <= fuzz) {

 length2 = length1
}

The default value is currently 112 (units are hardware specific at the moment!). Please see the

IR Signal Details document for further information.

intintintint ModFreqPeriodsToMeasure { ModFreqPeriodsToMeasure { ModFreqPeriodsToMeasure { ModFreqPeriodsToMeasure { getgetgetget; ; ; ; setsetsetset; }; }; }; }

The carrier frequency is measured during the first pulse of the IR signal. The larger the number

of periods used to measure, the more accurate the result is likely to be, however some signals

have short initial pulses, so in some case it may be necessary for applications to adjust this

value. Please see the IR Signal Details document for further information. Default value is

currently 8 periods.

doubledoubledoubledouble LengthToMilliSec(LengthToMilliSec(LengthToMilliSec(LengthToMilliSec(uintuintuintuint length) length) length) length)
uintuintuintuint MilliSecToLength(MilliSecToLength(MilliSecToLength(MilliSecToLength(doubledoubledoubledouble millis) millis) millis) millis)

Utility methods for length conversion between ms and values used by the RedRat hardware.

The actual value depends on the particular RedRat hardware used.

ushortushortushortushort ModFreqToVal(ModFreqToVal(ModFreqToVal(ModFreqToVal(doubledoubledoubledouble modFreq) modFreq) modFreq) modFreq)

Converts the carrier/modulation frequency into a value used by the RedRat hardware.

 - 21 -

Interface RedRat.RedRat3.IRedRat3

 extends RedRat.IRedRat
This interface adds RedRat3 specific functionality to the standard RedRat interface. The reason for

presenting the RedRat3 as an interface is that it allows flexibility in the concrete implementation, even

if the same type of hardware device is being used. For e.g., to communicate with a RedRat3 attached to

a different machine, the remote interface will still implement IRedRat3, but manage delegation of

method call across the network.

intintintint MaxNumLengths { MaxNumLengths { MaxNumLengths { MaxNumLengths { getgetgetget; ; ; ; setsetsetset; }; }; }; }

The maximum number of length values (the signal alphabet) that a can be used in a single

signal. As memory on a RedRat3 is limited, there is a trade-off in memory usage between the

signal data and the length array. The default value is 16 lengths. Please see the IR Signal

Details document for further information.

intintintint SignalMemorySize { SignalMemorySize { SignalMemorySize { SignalMemorySize { getgetgetget; ; ; ; setsetsetset; }; }; }; }

The amount of memory used to hold signal data. Default value is 512 bytes.

voidvoidvoidvoid OutputIrDaPacket() OutputIrDaPacket() OutputIrDaPacket() OutputIrDaPacket()

An IrDaPacket is a different kind of IR signal, similar to IrDa data communication signals, and

is used by some modern A/V devices as it offers some advantages over standard modulated IR

signals. As it is very different, not all RedRat hardware can deal with these signals.

boolboolboolbool RCDetectorEnabled { RCDetectorEnabled { RCDetectorEnabled { RCDetectorEnabled { getgetgetget; ; ; ; setsetsetset; }; }; }; }

Gets and sets whether the long-range remote control detector is enabled. When enabled, IR

signals from this detector will be passed back to the application via the RCDetectorSignalIn

event.

boolboolboolbool RCInputOneShot { RCInputOneShot { RCInputOneShot { RCInputOneShot { getgetgetget; ; ; ; setsetsetset; }; }; }; }

By default, when the long-range RC detector is enabled, it will produce a continuous stream of

IR data, e.g. when a remote control button is held down for several seconds. In some situations,

this may not be desirable, such as if there are a large number of actions to initiate with each

signal, so an application developer may prefer to read a signal one at a time. If the application

sets RCInputOneShot = true, then RCDetectorEnabled is set to false after a single input

signal and has to be explicitly re-enabled.

voidvoidvoidvoid ClearRCSignalInQueue() ClearRCSignalInQueue() ClearRCSignalInQueue() ClearRCSignalInQueue()

Incoming signals from the RC detector are queued so that detection isn't interrupted by

heavyweight event handling in the application. If a bunch of signals pile up in the queue, then

the application may want to clear the queue so that it doesn't carry on processing signals long

after the remote control input has stopped.

Class RedRat.USB.USBDevice

This class contains general fairly low-level USB management and marshalling code. It is probably not

necessary for the application developer to need to use this class directly, rather its RedRat3

specialization – RedRat3USBImpl.

publicpublicpublicpublic staticstaticstaticstatic USBDevice GetInstance(String devName) USBDevice GetInstance(String devName) USBDevice GetInstance(String devName) USBDevice GetInstance(String devName)

There should only be one instance of this class per USB device, so the constructor is not public,

rather a reference to an instance is obtained through this method. The parameter dev	ame is the

USB device name, e.g. “RedRat3-0”, “RedRat3-1” etc.

 - 22 -

publicpublicpublicpublic voidvoidvoidvoid CloseDriver() CloseDriver() CloseDriver() CloseDriver()

Explicitly closes the driver handle open for this device. Generally not needed by application

developers, but in some situations it is useful to explicitly close the driver before setting the

object to null as one is not sure when the garbage collector will perform finalization tasks.

publicpublicpublicpublic stringstringstringstring DeviceName { DeviceName { DeviceName { DeviceName { getgetgetget; }; }; }; }

Returns the USB device name associated with this object, e.g. “RedRat3-0”.

publicpublicpublicpublic USBDeviceInfo DeviceInformation USBDeviceInfo DeviceInformation USBDeviceInfo DeviceInformation USBDeviceInfo DeviceInformation { { { { get get get get; }; }; }; }

Returns the USB device information about this object.

publicpublicpublicpublic voidvoidvoidvoid Reset() Reset() Reset() Reset()
Resets the USB device’s firmware. This is not the same as unplugging the device and then plugging it

back in as there are some initialization tasks which only take place on power-on. Instead this method

just re-starts the device firmware.

Class RedRat.RedRat3.USB.USBRedRat3Impl

extends RedRat.USB.USBDevice
implements interface RedRat.RedRat3.IRedRat3

This class implements the interface/behavior described by the IRedRat3 interface in a USB device.

Apart from the implementation of the interface, this class only provides two additional methods of

interest here. Please see the superclasses for full interface details.

publicpublicpublicpublic staticstaticstaticstatic stringstringstringstring[] FindRedRat3s()[] FindRedRat3s()[] FindRedRat3s()[] FindRedRat3s()

The first step to using a RedRat3 is to find what RedRat3 are available with this static method.

The return is a set of names, e.g. “RedRat3-0”, “RedRat3-1” etc.

publicpublicpublicpublic staticstaticstaticstatic newnewnewnew RedRat3USBImpl GetInstance(String devName) RedRat3USBImpl GetInstance(String devName) RedRat3USBImpl GetInstance(String devName) RedRat3USBImpl GetInstance(String devName)

As with the USBDevice object, we only want one instance of this class per RedRat3, so the

constructor is not publicly available. To obtain an instance, use this method which will return

the instance for the given device name, or create a new instance if it doesn’t already exist.

Class RedRat.SignalEventArgs

The event arguments for incoming IR signal events – see the interface IRedRat for details on the events.

While the main purpose of this object is to pass the incoming IR data to event delegates, it must also

notify the delegates of other situations, e.g. an error or change in state of signal input on the RedRat.

The type of action is described by the enumeration SignalEventAction – see below.

publicpublicpublicpublic SignalEventAction Action { SignalEventAction Action { SignalEventAction Action { SignalEventAction Action { getgetgetget; }; }; }; }

Returns the action (or reason) for this event, see SignalEventAction below.

publicpublicpublicpublic IrDaPacket IrDaPacket { IrDaPacket IrDaPacket { IrDaPacket IrDaPacket { IrDaPacket IrDaPacket { getgetgetget; }; }; }; }

Returns the IrDaPacket object captured by the RedRat3 or null if object does not contain this

kind of data.

publicpublicpublicpublic ModulatedSignal ModulatedSignal ModulatedSignal ModulatedSignal ModulatedSignal ModulatedSignal ModulatedSignal ModulatedSignal { { { { getgetgetget; }; }; }; }

Returns the ModulatedSignal object captured by the RedRat3 or null if object does not contain

this kind of data.

 - 23 -

publicpublicpublicpublic Exception Exception { Exception Exception { Exception Exception { Exception Exception { getgetgetget; }; }; }; }
If there has been an exception, then this returns it. Null otherwise.

publicpublicpublicpublic intintintint QueueSize { QueueSize { QueueSize { QueueSize { getgetgetget; ; ; ; setsetsetset; }; }; }; }

Signals from the long-range remote control detector are put into a FIFO queue, which is

simultaneously emptied by an event dispatch thread. If these events are consumed at a slower

rate than the incoming signal rate, then the queue will fill up. Its size can be monitored with this

attribute.

publicpublicpublicpublic DateTime Time DateTime Time DateTime Time DateTime TimeStamp Stamp Stamp Stamp { { { { getgetgetget; }; }; }; }

Time at which this event was created. For signal input, this is (pretty much) the time the signal

was received.

Enumeration SignalEventAction

Used to describe the reason for signal events, i.e. SignalEventArgs object. Most often this is due to

incoming IR signals from a RedRat, but can also be due to changes in signal data, databases etc. Values

are:

MODULATED_SIGNALMODULATED_SIGNALMODULATED_SIGNALMODULATED_SIGNAL

This event args object contains new ModulatedSignal data.

IRDA_PACKETIRDA_PACKETIRDA_PACKETIRDA_PACKET

This object contains new IrDaPacket data.

EXCEPTIONEXCEPTIONEXCEPTIONEXCEPTION

Indicates to the event delegate that an exception has been thrown. There are two situations in

which this may happen: 1) a legitimate cancellation of IR signal input mode and 2) an actual

error from all code and hardware layers below this point (USB I/O code, device driver, system

or RedRat3).

RC_DETECTOR_ENABLEDRC_DETECTOR_ENABLEDRC_DETECTOR_ENABLEDRC_DETECTOR_ENABLED
RC_DETECTOR_DISABLEDRC_DETECTOR_DISABLEDRC_DETECTOR_DISABLEDRC_DETECTOR_DISABLED

These are only applicable to the long-range remote control detector and are used to indicate that

it has been enabled or disabled. Why is this needed? For some applications the RedRat3 is used

to control the PC and is then in permanent “listening” mode, waiting for input on the long-

range detector. However, when it has to perform another operation, for example output an IR

signal, then the RC detector is disabled for the duration of this operation. Application code

needs to be notified of this so it can take appropriate action, e.g. re-enable the RC detector.

SIGNAL_ADDEDSIGNAL_ADDEDSIGNAL_ADDEDSIGNAL_ADDED
SIGNAL_REMOVEDSIGNAL_REMOVEDSIGNAL_REMOVEDSIGNAL_REMOVED
SIGNAL_UPDATEDSIGNAL_UPDATEDSIGNAL_UPDATEDSIGNAL_UPDATED

Indicates to the event delegate that a signal has been added to an AVDevice or AVDeviceDB.

One reason to use this event is to update GUIs that may be displaying signal databases.

Class RedRat.DeviceInfo

Abstract class intended for use as superclass for hardware specific device information. As this type of

information is so hardware dependant, there is not much commonality that can be factored into this

class, so subclasses contain full information.

publicpublicpublicpublic stringstringstringstring Company { Company { Company { Company { getgetgetget; }; }; }; }

Returns the name of the hardware manufacturer company.

 - 24 -

Class RedRat.USB.USBDeviceInfo

extends RedRat.DeviceInfo
Subclass of DeviceInfo containing USB specific hardware details.

publicpublicpublicpublic stringstringstringstring ProductName { ProductName { ProductName { ProductName { getgetgetget; }; }; }; }

Display name of product, e.g. “RedRat3”.

publicpublicpublicpublic VersionInfo ProductVersion { VersionInfo ProductVersion { VersionInfo ProductVersion { VersionInfo ProductVersion { getgetgetget; }; }; }; }

Returns the version of the product hardware. See below for information on the VersionInfo

struct.

publicpublicpublicpublic stringstringstringstring SerialNo { SerialNo { SerialNo { SerialNo { get get get get; }; }; }; }

Returns the serial number of the hardware. This is of the form 1234ABCD, i.e. 8-digit ASCII

represented hexedecimal number.

publicpublicpublicpublic uintuintuintuint SerialNumberAsUint { SerialNumberAsUint { SerialNumberAsUint { SerialNumberAsUint { get get get get; }; }; }; }

Returns the serial number as an unsigned integer.

publicpublicpublicpublic ushortushortushortushort VendorID { VendorID { VendorID { VendorID { get get get get; }; }; }; }
publicpublicpublicpublic ushortushortushortushort ProductID { ProductID { ProductID { ProductID { get get get get; }; }; }; }

Returns the USB vendor ID and product ID for the USB device. These numbers are used by the

OS for loading the correct driver.

Class RedRat.LocationInfo

Holds physical location information for a RedRat, e.g. where it is physically located. Subclasses for

certain types of hardware give more specific features and map this information onto some uniquely

identifying feature of the hardware.

publicpublicpublicpublic stringstringstringstring Name { Name { Name { Name { getgetgetget; ; ; ; ssssetetetet; }; }; }; }

Readable name for the RedRat, such as the equipment it controls or its location – “HiFi” or

“LivingRoom”. This name should be used by application programs when looking up RedRats.

publicpublicpublicpublic stringstringstringstring Description { Description { Description { Description { getgetgetget; ; ; ; setsetsetset; }; }; }; }

Longer descriptive text for the location of the RedRat.

Class RedRat.RedRat3.RedRat3LocationInfo

 extends RedRat.LocationInfo
Maps location information onto a RedRat3 device. The RedRat3 serial number is used as the key to

store the location information in the local computer’s registry.

publicpublicpublicpublic uintuintuintuint SerialNo { SerialNo { SerialNo { SerialNo { getgetgetget; }; }; }; }

Returns the serial number of the RedRat3.

Struct RedRat.Util.VersionInfo

Very simple struct to hold major and minor version information.

 - 25 -

publicpublicpublicpublic uintuintuintuint Major { Major { Major { Major { getgetgetget; }; }; }; }
publicpublicpublicpublic uintuintuintuint Minor { Minor { Minor { Minor { getgetgetget; }; }; }; }

Class RedRat.IR.IRPacket

Superclass for all types of IR signal. As different types vary quite considerably, this class does not

currently have any attributes.

public public public public stringstringstringstring Name {Name {Name {Name { get get get get; ; ; ; setsetsetset; }; }; }; }

Common name of the signal, e.g. “Play”, “Stop”, “Mute” etc.

public public public public stringstringstringstring Description {Description {Description {Description { g g g getetetet; ; ; ; setsetsetset; }; }; }; }

Free text description of signal if required.

public bytepublic bytepublic bytepublic byte[] UID { [] UID { [] UID { [] UID { getgetgetget; }; }; }; }

Unique identifier for an IRPacket. This is used in signal databases and situations in which

persistent references to signals are required. It is not a hash code of internal state, so cannot be

used to deduce any information about the signal. Is intended for use with the System.Guid

structure.

publicpublicpublicpublic staticstaticstaticstatic boolboolboolbool UIDCompare(UIDCompare(UIDCompare(UIDCompare(bytebytebytebyte[] uid1, [] uid1, [] uid1, [] uid1, bytebytebytebyte[] uid2)[] uid2)[] uid2)[] uid2)

Used to compare the identity of two IRPackets using their UID. Returns true if uids are the

same.

Class RedRat.IR.ModulatedSignal

extends RedRat.IR.IRPacket
The vast majority of infrared remote control signals fall into this category. The RedRat2 only these

types of signals, and currently RedRat3 firmware is only setup to manage these kind of signals.

Generally it is not necessary for the application developer to understand the details of IR signals, but if

data manipulation or conversion routines are developed, then understanding is necessary – please refer

to the IR Signal Details document.

public const intpublic const intpublic const intpublic const int EOS_MARKER EOS_MARKER EOS_MARKER EOS_MARKER

Value in the signal data array marking the separation between the main and repeat signals. See

the SigData attribute.

publicpublicpublicpublic doubledoubledoubledouble ModutationFreq { ModutationFreq { ModutationFreq { ModutationFreq { get get get get; ; ; ; setsetsetset; }; }; }; }

The signal carrier or modulation frequency. Units of Hz.

publicpublicpublicpublic doubledoubledoubledouble[] Lengths { [] Lengths { [] Lengths { [] Lengths { getgetgetget; ; ; ; setsetsetset; }; }; }; }

An IR signal is constructed from periods of IR activity separated by periods of no activity. The

lengths of these periods (not the sequence) are collected together into an alphabet from which

the signal sequence can be described. The lengths are the alphabet, and the units are ms.

publicpublicpublicpublic bytebytebytebyte[] SigData { [] SigData { [] SigData { [] SigData { getgetgetget; ; ; ; setsetsetset; }; }; }; }

The sequence of length values (i.e. lookup into the Lengths data) creating an IR signal. A signal

is normally constructed from a main signal, followed by a repeat signal, all contained in this

data array. The separation between the two blocks of data can be identified by the

EOS_MARKER.

 - 26 -

publicpublicpublicpublic intintintint NoRepeats { NoRepeats { NoRepeats { NoRepeats { get get get get; ; ; ; setsetsetset; }; }; }; }
When a remote control button is held down for more than a very brief period, the usual

behavior is that the repeat signal section is repeatedly transmitted. This attribute contains the

number of re-transmissions of the repeats section.

publicpublicpublicpublic doubledoubledoubledouble IntraSigPause { IntraSigPause { IntraSigPause { IntraSigPause { get get get get; ; ; ; setsetsetset; }; }; }; }

Period of dead time between the main and the repeat signals. Units of ms.

publicpublicpublicpublic bytebytebytebyte[] MainSignal { [] MainSignal { [] MainSignal { [] MainSignal { getgetgetget; }; }; }; }
publicpublicpublicpublic bytebytebytebyte[] RepeatSignal { [] RepeatSignal { [] RepeatSignal { [] RepeatSignal { getgetgetget; }; }; }; }

Derived attributes from the signal data - he signal data is usually split into a main and repeat

signal sections.

publicpublicpublicpublic ToggleBit[] ToggleData { ToggleBit[] ToggleData { ToggleBit[] ToggleData { ToggleBit[] ToggleData { getgetgetget; }; }; }; }

This data returns bits toggled or swapped every time a signal is sent – see information on the

ToggleBit struct and documentation on IR signals for more information.

publicpublicpublicpublic staticstaticstaticstatic stringstringstringstring ToXML(ModulatedSignal modSig) ToXML(ModulatedSignal modSig) ToXML(ModulatedSignal modSig) ToXML(ModulatedSignal modSig)

Converts a modulated signal to an XML string for storage, exchange etc.

publicpublicpublicpublic staticstaticstaticstatic ModulatedSignal FromXML(ModulatedSignal FromXML(ModulatedSignal FromXML(ModulatedSignal FromXML(stringstringstringstring xmlData) xmlData) xmlData) xmlData)
Converts an XML representation of an IR signal back to a ModulatedSignal object.

publicpublicpublicpublic staticstaticstaticstatic boolboolboolbool CompareSignal(ModulatedSignal sig1, ModulatedSignal sig1, CompareSignal(ModulatedSignal sig1, ModulatedSignal sig1, CompareSignal(ModulatedSignal sig1, ModulatedSignal sig1, CompareSignal(ModulatedSignal sig1, ModulatedSignal sig1,
 double double double double tolerancetolerancetolerancetolerance))))

Simple method to compare two signals, returning true if they are the same to the given

tolerance. The tolerance parameter is a percentage, a value of somewhere between 10 and 20

giving reasonable results.

publicpublicpublicpublic staticstaticstaticstatic boolboolboolbool MainRepeatIdentical(Modulated MainRepeatIdentical(Modulated MainRepeatIdentical(Modulated MainRepeatIdentical(ModulatedSignal sig)Signal sig)Signal sig)Signal sig)

Checks whether the repeat signal is the same as the main signal.

publicpublicpublicpublic staticstaticstaticstatic boolboolboolbool SigDataEquivalence(SigDataEquivalence(SigDataEquivalence(SigDataEquivalence(bytebytebytebyte[] data1, [] data1, [] data1, [] data1, bytebytebytebyte[] data2)[] data2)[] data2)[] data2)

Utility method to test whether two signal data arrays are equal.

Struct ToggleBit

Some devices/remotes put so-called toggle bits in their signals, i.e. one or bits are swapped every time a

signal is sent. While it is not always necessary to reproduce such toggle bits on signal output, it is

important to know about them for signal recognition.

publicpublicpublicpublic intintintint bitNo; bitNo; bitNo; bitNo;

Position in the signal data to which this toggle bit applies.

publicpublicpublicpublic intintintint len1, len2; len1, len2; len1, len2; len1, len2;

The two length values at the point in the signal represented by this ToggleBit. When a signal is

output the first time, this position in the signal has length value len1, the second time len2, third

time len1 and so on.

Class RedRat.RedRat3.RedRat3ModulatedSignal

extends RedRat.IR.ModulatedSignal
Subclass of ModulatedSignal containing RedRat3 specific functionality, e.g. marshalling/de-

marshalling of USB transfer data blocks into the appropriate ModulatedSignal variables.

 - 27 -

Class RedRat.IR.IrDaPacket

extends RedRat.IR.IRPacket
Holds data the describes an IrDa-like remote control signal.

publicpublicpublicpublic doubledoubledoubledouble InterSubPacketPause InterSubPacketPause InterSubPacketPause InterSubPacketPause { { { { getgetgetget; ; ; ; setsetsetset; }; }; }; }

The period of time between sub-packets in a packet.

publicpublicpublicpublic SubPacket[] SubPackets { SubPacket[] SubPackets { SubPacket[] SubPackets { SubPacket[] SubPackets { get get get get; ; ; ; setsetsetset; }; }; }; }

An array of objects, each one representing a signal sub-packet.

Class RedRat.IR.IrDaPacket.SubPacket

Represents a single sub-packet in an IrDa-like signal. A sub-packet is a series of pulses separated by

varying periods given as float millisecond values.

publicpublicpublicpublic floatfloatfloatfloat[] PulseLengths {[] PulseLengths {[] PulseLengths {[] PulseLengths { get get get get; ; ; ; setsetsetset; }; }; }; }

The set of lengths (ms) of the periods between pulses in this SubPacket.

Class RedRat.RedRat3.RedRat3IrDaPacket

extends RedRat.IR.IrDaPacket
Subclass of IrDaPacket containing RedRat3 specific functionality, e.g. marshalling/de-marshalling of

USB transfer data blocks into the appropriate IrDaPacket variables.

Class RedRat.IR.ProntoModulatedSignal

 extends RedRat.IR.ModulatedSignal
Subclass of ModulatedSignal constructed from a Pronto signal data string.

publicpublicpublicpublic ProntoModulatedSignal(ProntoModulatedSignal(ProntoModulatedSignal(ProntoModulatedSignal(stringstringstringstring origProntoData) origProntoData) origProntoData) origProntoData)

Constructor, taking an input string of the form:
0000 006C 0000 0011 00A2 0014 003C 0014 003C 0014 0014 0014 0014

0014 003C 0014 003C 0014 003C 0014 0014 0014 003C 0014 003C 0014

003C 0014 0014 0014 003C 0014 0014 0014 0014 0014 0014 0014

Class RedRat.AVDeviceMngmt.AVDeviceDB

Holds information for many audio-visual devices, i.e. a local database of IR signals. This database can

be saved, exchanged with others, have single devices added (e.g. from the web), used for decoding

signals or have signals looked up for output.

publicpublicpublicpublic voidvoidvoidvoid AddAVDevice(AVDevice newAVDevice) AddAVDevice(AVDevice newAVDevice) AddAVDevice(AVDevice newAVDevice) AddAVDevice(AVDevice newAVDevice)

Adds a new AVDevice to this database. Throws an AVDeviceExistsException if a device of this

local name already exists in the DB.

publicpublicpublicpublic AVDevice GetAVDevice(AVDevice GetAVDevice(AVDevice GetAVDevice(AVDevice GetAVDevice(stringstringstringstring deviceName) deviceName) deviceName) deviceName)

Returns the AVDevice object of the given name.

publicpublicpublicpublic voidvoidvoidvoid RemoveAVDevice(RemoveAVDevice(RemoveAVDevice(RemoveAVDevice(stringstringstringstring devName) devName) devName) devName)

 - 28 -

Deletes the AVDevice with the given name from the database.

publicpublicpublicpublic stringstringstringstring[] GetA[] GetA[] GetA[] GetAVDeviceNames()VDeviceNames()VDeviceNames()VDeviceNames()

Return the names of the AVDevice objects currently contained in the signal DB.

publicpublicpublicpublic IRPacket GetIRPacket(IRPacket GetIRPacket(IRPacket GetIRPacket(IRPacket GetIRPacket(stringstringstringstring devName, devName, devName, devName, stringstringstringstring signalName) signalName) signalName) signalName)

Obtain the IR signal from the given device with the passed signal name.

publicpublicpublicpublic IRPacket GetIRPack IRPacket GetIRPack IRPacket GetIRPack IRPacket GetIRPacket(et(et(et(bytebytebytebyte[] uid)[] uid)[] uid)[] uid)

Obtain the IR signal with the given signal 16 byte UID.

publicpublicpublicpublic SignalKey DecodeSignal(IRPacket irPacket) SignalKey DecodeSignal(IRPacket irPacket) SignalKey DecodeSignal(IRPacket irPacket) SignalKey DecodeSignal(IRPacket irPacket)

If one has an input signal from either detector (usually the long-range detector though), one can

use this method to find a signal match in this database. A SignalKey object is returned, which

can be used for simple evaluation and initiation of actions.

publicpublicpublicpublic voidvoidvoidvoid CreateDecoder() CreateDecoder() CreateDecoder() CreateDecoder()

Inside this object, a signal decoder state machine is built to support reasonably efficient and

reliable decoding. Normally the decoder state machine is constructed the first time the

DecodeSignal() method is called, however this cause a holdup in the decoding operation while

this takes place if a large database is used. An alternative is to explicitly construct the decoding

state machine using this method, e.g. immediately after loading the database.

publicpublicpublicpublic doubledoubledoubledouble DecoderSMCreateDelta DecoderSMCreateDelta DecoderSMCreateDelta DecoderSMCreateDelta {{{{ get get get get; ; ; ; setsetsetset; }; }; }; }

When constructing the decoding state machine, it is desirable to have equivalent patterns of

state transition in the decoding state machine for similar signals (e.g. the first half of signals

from the same remote if they all have the same starting code). However, when

capturing/learning signals, they are seldom identical, so this value sets the latitude for the

construction of decoding states – if two states at the same depth differ by less than this value

they are merged. Default value is 0.05ms.

publicpublicpublicpublic doubledoubledoubledouble DecoderSMDecodeDelta DecoderSMDecodeDelta DecoderSMDecodeDelta DecoderSMDecodeDelta {{{{ get get get get; ; ; ; setsetsetset; }; }; }; }

When decoding a signal, direct comparison of a state’s value with a signal data values is not

possible due to variation in signal data each time a signal is input, so this value sets the latitude

for equivalence of a value in a particular state. Default value is 0.5ms.

Class RedRat.AVDeviceMngmt.AVDevice

This object represents a single audio-visual device (often also meaning a single remote control) with a

set of remote control signals. There is also some additional information which is designed to support

publishing and finding the right information, e.g. via a web service rather than having to capture all the

codes.

publicpublicpublicpublic enumenumenumenum AVDeviceType; AVDeviceType; AVDeviceType; AVDeviceType;

An enumeration defining the type of device, e.g. TV, VCR etc. This allows applications to

behave appropriately, e.g. upon creation of a new AVDevice object of type CD, a set of default

IR signals could be created.

publicpublicpublicpublic stringstringstringstring Name Name Name Name {{{{ get get get get; ; ; ; setsetsetset; }; }; }; }

The local name for this device, such as LIVING_ROOM_TV or VCR2. This is then used by

application code to identify signals within the context of RedRat hardware installation.

publicpublicpublicpublic stringstringstringstring Manufa Manufa Manufa Manufacturer cturer cturer cturer {{{{ get get get get; ; ; ; setsetsetset; }; }; }; }

 - 29 -

Manufacturer of the AV device – used for global lookup.

publicpublicpublicpublic stringstringstringstring DeviceModelNumber { DeviceModelNumber { DeviceModelNumber { DeviceModelNumber { get get get get; ; ; ; setsetsetset; }; }; }; }

Model number of the AV device.

publicpublicpublicpublic stringstringstringstring RemoteModelNumber { RemoteModelNumber { RemoteModelNumber { RemoteModelNumber { get get get get; ; ; ; setsetsetset; }; }; }; }

Model number of the remote. Provides an alternative method of finding this data, e.g. from a

web service.

publicpublicpublicpublic AVDeviceType DeviceType { AVDeviceType DeviceType { AVDeviceType DeviceType { AVDeviceType DeviceType { get get get get; ; ; ; setsetsetset; }; }; }; }

The type of this particular AV device.

publicpublicpublicpublic IRPacket[] Signals { IRPacket[] Signals { IRPacket[] Signals { IRPacket[] Signals { get get get get; ; ; ; setsetsetset; }; }; }; }

The set of signals associated with this AV device.

publicpublicpublicpublic voidvoidvoidvoid AddSignal(IRPa AddSignal(IRPa AddSignal(IRPa AddSignal(IRPacket newSignal, cket newSignal, cket newSignal, cket newSignal, stringstringstringstring name, name, name, name, boolboolboolbool overwrite); overwrite); overwrite); overwrite);

Adds a new signal to this device. If overwrite is false, then a SignalExistsException is thrown if

a signal with this name already exists. If overwrite is false, then the signal with that name is

replaced if it exists.

publicpublicpublicpublic voidvoidvoidvoid RemoveSignal(RemoveSignal(RemoveSignal(RemoveSignal(stringstringstringstring sigName); sigName); sigName); sigName);

Removes the signal with the given name from this AVDevice object.

publicpublicpublicpublic stringstringstringstring[] GetSignalNames();[] GetSignalNames();[] GetSignalNames();[] GetSignalNames();

Returns the names of signals in this AVDevice.

publicpublicpublicpublic IRPacket GetSignal(IRPacket GetSignal(IRPacket GetSignal(IRPacket GetSignal(stringstringstringstring name); name); name); name);

Obtains the signal with the given name if it exists, otherwise returns null.

publicpublicpublicpublic IRPacket GetSignal(IRPacket GetSignal(IRPacket GetSignal(IRPacket GetSignal(bytebytebytebyte[] uid);[] uid);[] uid);[] uid);

Obtains the signal with the given uid if it exists, otherwise returns null.

Class RedRat.AVDeviceMngmt.SignalKey

When a signal has been “decoded” or recognized, a SignalKey object is returned containing information

about this signal.

publicpublicpublicpublic enumenumenumenum Status; Status; Status; Status;

Can take values K	OW	 or U	K	OW	.

publicpublicpublicpublic AVDevice AVDevice { AVDevice AVDevice { AVDevice AVDevice { AVDevice AVDevice { get get get get; }; }; }; }

The AVDevice to which this signal belongs.

publicpublicpublicpublic IRPacket Signal { IRPacket Signal { IRPacket Signal { IRPacket Signal { getgetgetget; }; }; }; }

The actual signal represented by this key.

publicpublicpublicpublic Status KeyStatus { Status KeyStatus { Status KeyStatus { Status KeyStatus { getgetgetget; }; }; }; }

Status of this SignalKey, i.e. does it represent a signal that is known or not?

