

The irNetBox Network Control Protocol

Mk-I, Mk-II and MK-III

Chris Dodge – RedRat Ltd

08 May 2015

V3.03

 Introduction... 4
 The irNetBox Design ... 4

 Overview ... 4
2.1.1 irNetBox-I .. 4
2.1.2 irNetBox-II ... 4
2.1.3 irNetBox-III ... 4
 Hardware Architecture .. 4
2.2.1 XPort Network Interface ... 4
2.2.2 Control/USB Micro ... 5
2.2.3 Routing Switch (I & II only) ... 5
2.2.4 XMOS XS1-G4 Processor (III only) ... 5

 Network Installation and XPort Configuration .. 6
 IRNetBox Discovery and Identification .. 6

 Discovery .. 6
 Identifying irNetBox Type .. 6
4.2.1 Identification via UDP ... 6
4.2.2 Identification via Direct TCP Communication ... 7

 IR I/O Comms .. 7
 Control Protocol Overview .. 7
 Message Types .. 8
5.2.1 [Message 1] Error .. 9
5.2.2 [Message 4] Read Firmware Version ... 9
5.2.3 [Message 5 and 6] CPLD Power Management ... 9
5.2.4 [Message 7] CPLD Instruction ...10
5.2.5 [Message 8] Read the Device’s Serial Number ...10
5.2.6 [Message 9] Read the Device Version ...11
5.2.7 [Message 16] Allocate Memory for a Modulated Signal ...11
5.2.8 [Message 17] Download Modulated IR Signal Data ...11
5.2.9 [Message 18] Output Modulated IR Signal ..13
5.2.10 [Message 19] Initiate Signal Learning ..14
5.2.11 [Message 20] Cancel Signal Input ..14
5.2.12 [Message 21] Signal Data Upload ..14
5.2.13 [Message 22] Allocate memory for IrDA data packets. ...14
5.2.14 [Message 23] Download an IrDA Packet Data ...15
5.2.15 [Message 24] Output IrDA Packet ..15
5.2.16 [Message 32] Read the Signal Capture/Memory Parameters ..15
5.2.17 [Message 33] Set the Signal Capture/Memory Parameters ..17
5.2.18 [Message 34] Set All Outputs Using a Bit Mask (MK-II & III only) ...17

 Asynchronous IR Output (MK III only) .. 17
6.1.1 [Message 48] Asynchronous IR Signal Output (MK-III only) ..19
6.1.2 [Message 48 contd] ACK/NACK Response to IR Signal Output (MK-III only) ...20
6.1.3 [Message 49] Asynchronous IR Output Complete (MK-III only) ...20

 Example Message Sequences Required to Perform Operations .. 21
 Connecting to the irNetBox ...21
 Disconnecting from the irNetBox ..21
 Outputting an IR Signal ..21

 Resetting the XS1 Processor (MK-III only) .. 22
 An Introduction to Remote Control Signals .. 22

 Modulated Remote Control Signals ..23
9.1.1 Layer 1 – Main and Repeat Signals ...23
9.1.2 Layer 2 – Signal Envelope ...23
9.1.3 Layer 3 – Carrier/Modulation Frequency ..23
 IrDA-Like Signals ..23
 Flash-Code Signals ...24

 Understanding the RedRat XML Signal Data Format ... 24
 IRPacket ...25
 Name ...25
 UID ...25

 ModulationFreq ..25
 Lengths ...25
 SigData ...25
 NoRepeats ...25
 IntraSigPause ...25
 ToggleData ..26

10.9.1 ToggleBit ...26
 Using the Signal Database Utility for Creation of Signal Data Memory Blocks ... 26

 Exporting a Device in IRNetBox Format ..26
 The Exported Data File Format ...26

 Introduction
The irNetBox is a networked device for infrared remote control of multiple devices, so allowing computer
control of audio-visual equipment placed within proximity of a network access point.

For development of applications on the Windows platform (.NET or COM), the RedRat SDK can be used which
hides the details of all network data transfer and presents a simple API. If however you are developing an
application for a different platform or prefer to use direct network IO, then this document describes the details
of the network control protocol.

The protocols described here apply to both three generations of irNetBox, which are termed the MK-I, MK-II
and MK-III (or I, II and III for short). Each generation of irNetBox introduces new functionality so some care must
be taken to ensure that the correct messages are sent to the right type of hardware, though we have attempted
to make them as compatible as possible.

 The irNetBox Design

 Overview

2.1.1 irNetBox-I

 One IR generator microcontroller (IR signals can be routed to any output port combination)

 16 IR output ports

 Optional high-power output on port 1

 IR input for learning IR signals from original handsets

 Network and USB interface

2.1.2 irNetBox-II

 RoHS compliant (lead-free).

 All IR output ports have three power levels. On the original irNetBox, only output 1 has switchable high
and low power.

 Faster IR micro providing support for a wider range of IR signal types.

2.1.3 irNetBox-III

 Uses the powerful four core XS1-G4 from XMOS as its main processor

 Can generate 16 different IR signals concurrently

 IR outputs have 100 different output power levels

 Built in self-test hardware

 Additional 25-way D-type socket on rear for connecting IR emitter bundles

 Hardware Architecture

As the network control protocol is fairly low-level, some knowledge of the hardware is useful to understand the
type and sequence of commands needed for operation. Figure 1 shows the main elements of the MK-I and MK-II
hardware while Figure 2 shows the MK-III architecture.

2.2.1 XPort Network Interface

Developed by Lantronix (www.lantronix.com), this is a complete network interface in a single unit. Its main role is
to convert TCP/IP data packets into serial data to pass to the IR I/O micro, and visa-versa. See section 3 for
details on network configuration of the XPort.

Figure 1. Overview of irNetBox-I and II architecture

2.2.2 Control/USB Micro

This micro is responsible for IR signal sampling and signal generation in the MK-I and MK-II units. It also has a
parallel interface to the signal routing logic device, so generates the commands to configure the routing device
for a particular operation, for example, routing the generated IR signal to the requested IR outputs.

In the MK-III system the same microcontroller is used to handle USB comms and forward on to the XS1
processor.

2.2.3 Routing Switch (I & II only)

This is a complex programmable logic device (CPLD) that routes input and output signals to the correct
destinations. It is instructed which outputs to enable by the control micro, and indicates its current status using
the visible IR LEDs. It is sufficiently flexible to allow any combination of IR outputs to be selected at whichever
power level is required.

2.2.4 XMOS XS1-G4 Processor (III only)

This is a 32-bit, four core processor with a multi-threaded processor architecture and so capable of generating
up to 16 different IR signals concurrently.

Figure 2. Overview of the irNetBox-III architecture

Control
Micro

XPort
Network
Interface

USB
Socket

Routing
Switch

IR Outputs

Indicator LEDs

XPort
Network
Interface

USB
Socket

XMOS XS1-G4
Processor

 Indicator LEDs

USB

Micro

IR Outputs

 Network Installation and XPort Configuration
The irNetBox has to be setup to work on your network, and Lantronix provide a tool for the configuration of the
XPort called the Device Installer. It can be downloaded from the Lantronix website at http://www.lantronix.com/
and can be used to assign the device an IP address or allow it to use a DHCP server on the network for obtaining
an address.

The Lantronix Device Installer should not be used to adjust other XPort parameters as this may prevent correct
operation within the irNetBox. In case the XPort configuration needs to be re-set for correct operation, then
please use the Windows IRNetBox Manager application, which can be downloaded from the RedRat website:
http://www.redrat.co.uk/.

 IRNetBox Discovery and Identification

 Discovery

Once the irNetBox has been installed on a network, your application code may need to discover the IP address of
any irNetBoxes on the local network. If you have assigned a fixed IP address to the device, this step is not
necessary, but if the IP address is obtained via DHCP or devices are frequently taken in and out of commission,
then dynamic discovery is needed.

Discovery is done with a UDP broadcast, sending a block of 4 bytes as shown below to port 30718 (0x77FE).

UDP Broadcast for irNetBox Discovery

To Port: 30718 (0x77FE)

Data block to send 0x00, 0x00, 0x00, 0xF6

The XPort will respond with a datagram of 30 bytes in length, containing the following information in the order
given:

Datagram Returned from the 0xF6 Request

Data block type 4 bytes Should be 0x00, 0x00, 0x00, 0xF7

First few bytes of firmware
image ID

16 bytes Bytes 4 and 5 of this section contain the
firmware type – “X1”, “X2”, “X5” or “X9”.

Device info. 4 bytes

MAC address 6 bytes The MAC address of the XPort

The MAC address is unique for every device on a network, so can be used as a method of uniquely identifying the
irNetBox.

UDP communication information should also make it possible to obtain the source IP address of all returned
datagrams, so if the IP address is not known, it can be obtained this way.

 Identifying irNetBox Type

As there are some differences between the MK-I, II and III irNetBoxes, software systems need a method of
identifying the kind of irNetBox with which they have a connection.

4.2.1 Identification via UDP

The first step of this process is to identify the XPort firmware ID as given in the previous section:

XPort Type irNetBox Type

X1 or X2 MK-I

X5 MK-I, MK-II or MK-III

X9 MK-III

http://www.lantronix.com/
http://www.redrat.co.uk/

If the XPort type is an X1 or X2, then the irNetBox is a MK-I version and no other identification communication is
needed.

The X5 XPort types have been used in both MK-I, II and II irNetBoxes, so further interrogation of the XPort is
needed as it contains an identifying label. To obtain the block of configuration information containing the label, a
UDP request is sent to port 30718 (0x77FE), and a 130 byte data block is returned.

UDP Request for irNetBox Type Discovery

To Port: 30718 (0x77FE)

Data block to send 0x00, 0x00, 0x00, 0xE4

The following 130 byte data block is then returned:

Data block Returned from the 0xE4 Request

Misc data 32 bytes Not of interest

Length of irNetBox type
label

1 byte Length of label = dataBlock[32]

Label X bytes The label, either REDRAT4, REDRAT4-II or
REDRAT4-III.

A recommended method of checking the returned data is firstly to check dataBlock[32] to see if it is greater

than 0. If it is 0 when using an X5 firmware type XPort, then the device is not an irNetBox. If it is greater than 0,
then read the label from dataBlock[33] onwards as a null terminated string, i.e. until a byte of value zero is

encountered.

The X9 firmware type of XPort is used in MK-III irNetBoxes only from September 2013 onwards, and serial
number 15892 or higher. With this type it is recommended that the above procedure is followed for the
identification of the irNetBox type to support future versions.

4.2.2 Identification via Direct TCP Communication

Once a connection with the irNetBox has been established, then using message 9 will give the irNetBox’s
version. See section 5.2.6 for details of the data returned and using this to identify the specific hardware version.

 IR I/O Comms
This is the method by which the irNetBox can be instructed to output and capture remote control signals. The
XPort passes through any data sent via a TCP/IP socket opened on port 10001 to the IR I/O micro and all data
returned from the control micro is then passed back via the same TCP/IP socket to the host. By keeping this
socket open, the host can ensure that it has exclusive access to the irNetBox for the duration of its session.

 Control Protocol Overview

For each message that is sent to the irNetBox, an acknowledgement message will be returned, so the host should
not send a second message until the acknowledgement from the first message has been received.

The structure of a message from host to irNetBox is:

Message Structure: Host to irNetBox

‘#’ byte The ‘#’ character indicates to the control micro the
start of a message.

Message length ushort The length of the data section of this message.

Message type byte One of the values listed below.

Data byte[] Any data associated with this type of message.

A ushort value is a 16-bit unsigned integer in big-endian format. Most PCs are little endian, so the bytes need to
be swapped on the host.

Once the control micro has received a message, it will respond with a very similar type of message, except that it
does not have the ‘#’ start of message character:

Message Structure: irNetBox to Host

Message length ushort The length of the data section of this message.

Message type byte Contains either:
a) The same value as the original message

from the host or
b) A value indicating “Error”.

Message Data byte[] Any data associated with this type of message.

 Message Types

The table below lists the following message types:

Message Types For Commands to and from the irNetBox.

Decimal Hex Description

1 0x01 Message contains error information.

4 0x04 Read the IR I/O micro firmware ID.

5 0x05 Turn power to the CPLD device on.

6 0x06 Turn power to the CPLD device off.

7 0x07 Send an instruction to the CPLD device.

8 0x08 Read the serial number of the device.

9 0x09 Read the device version.

Modulated IR Signal Functions

16 0x10 Allocate memory for a modulated IR signal on the IR I/O micro.

17 0x11 Download modulated signal data to the IR I/O micro memory.

18 0x12 Output the modulated signal stored in memory.

19 0x13 Initiate learning of a modulated IR signal

20 0x14 Cancel signal learning.

21 0x15 Signal data upload, i.e. irNetBox to host.

IrDA-Like Signal Functions

22 0x16 Allocate memory for IrDA data packets.

23 0x17 Download an IrDA packet for output.

24 0x18 Output the IrDA packet in memory.

26 0x1A Output a flash-code IR signal (no carrier wave).

Signal Capture and Memory Parameters

32 0x20 Read the signal capture and memory parameters.

33 0x21 Sets the signal capture and memory parameters.

IR Output Bit Mask (II and III only)

34 0x22 Set all outputs at the correct power levels in one instruction,
downloaded as a bit mask.

Asynchronous IR Output Commands (III only)

48 0x30 Output IR signal asynchronously

49 0x31 Asynchronous IR output is complete

To support the high-throughput of IR signals in the MK-III irNetBox, the asynchronous/overlapped messages
0x30 and 0x31 have been introduced. These are explained in detail in section 6.

Due to the difference in architecture between the MK-I,II irNetBoxes and the MK-II box, not all commands listed
below make sense for the MK-III. However it attempts to be as backwards compatible as possible, so will
attempt to make sense of the commands in such a way as to result in identical IR output behaviour.

5.2.1 [Message 1] Error

The first byte of the message data contains the error code, the values it can currently take being listed in the
table below.

Error Values Returned From the irNetBox

Decimal Hex Description

32 0x20 Signal Capture: The initial IR signal pulse is not long enough to
measure the carrier frequency. It usually expects to eight. To
correct, try reducing the number of carrier cycles to count, see
section 5.2.16.

33 0x21 Signal Capture: Not enough “length” values allocated for this IR
signal, indicating that the environment is noisy or the signal is
complex. To correct, increase the number of lengths, see section
5.2.16.

34 0x22 Signal Capture: Not enough memory has been allocated for the
sampled signal data. The amount of memory can be increased, see
section 5.2.16.

35 0x23 Signal Capture: Too many repeats in signal, i.e. it exceeds the
maximum allowed, which is 255.

40 0x28 Signal Download: Not enough memory on device to allocate
memory for modulated signal. To correct this problem, reduce
some of the memory data size parameters – see section 5.2.16.

41 0x29 Signal Download: No memory for modulated signal has been
allocated. To correct, request signal memory allocation – see
section 5.2.7.

42 0x2A No signal data has been captured or downloaded. This happens if an
attempt is made to output an IR signal before any signal data has
been downloaded.

43 0x2B Signal Download: Not enough memory available on device for
allocation of the IrDa signal buffer.

44 0x2C Signal Download: No memory for the IrDa data has not been
allocated. To correct, send command to allocate memory for an
IrDA signal download.

45 0x2D Signal Download: No IrDa signal data has been downloaded. This
happens if an attempt is made to output an IrDA type signal before
the data has been downloaded.

5.2.2 [Message 4] Read Firmware Version

The data section of the returned message will contain a null terminated ASCII string, such as:

1.00IP (c) RedRat Ltd 2008

5.2.3 [Message 5 and 6] CPLD Power Management

The CPLD can have its power turned off under software control so that when idle, the irNetBox does not draw so
much power, saving up to 20%. Additionally all power to the red and infrared LEDs is fed through the same
power switch.

Turning the CPLD power on takes about 50ms (up to 250ms on the irNetBox-I), so turning the CPLD power off is
not necessarily practical following the output of every IR signal. A reasonable rule of thumb is to enable the
CPLD power once a TCP/IP connection has been established with the irNetBox, and disable the power on
disconnect.

The CPLD power is off when the irNetBox is first started.

5.2.4 [Message 7] CPLD Instruction

The first byte of the message data contains the instruction for the CPLD device. The IR outputs are numbered 1
to 16 below, corresponding to the labelling on the irNetBox. If you have used the SDK, then note that the
numbering starts from 0.

CPLD Instructions

Decimal Hex Description

0 0x00 Reset the CPLD. The reset state is where none of the red and
infrared outputs are enabled, and IR input is not enabled.

2 0x02 Enable low power on the first IR output, i.e. number 1.

3 to 17 0x03 to
0x11

Enable low power IR outputs 2 to 16.

18 0x12 Enable all IR outputs.

19 0x13 Enable high power on output 1.

20 0x14 Route the input from the “learning” remote control receiver to
the IR I/O micro. It should not be necessary to explicitly send
this instruction as the firmware does this automatically.

23 0x17 Instructs the CPLD to set the visible LEDs to reflect the enabled
state of the IR outputs, for example, if IR output 1 is enabled,
then the red LED 1 will light.

24 0x18 Visible LEDs do not reflect whether the IR outputs are enabled
or not, i.e. they remain off.

The following instructions are for the irNetBox-II only

32 0x20 Enable medium power on output 1.

33 to 47 0x21 to 0x2F Enable medium power on outputs 2 to 16.

To generate high power on any output, enable both the low and medium power, which together will generate the
high power signal (irNetBox-II only).

Rather than sending a large number of single instructions to set all outputs to the required state, a single bitmask
can be used – see section 5.2.18 (irNetBox-II and III only).

Even though the irNetBox-III does not have a CPLD device, it will interpret these commands to perform a the
equivalent action.

5.2.5 [Message 8] Read the Device’s Serial Number

The serial number is a 4-byte number, for example ‘00-00-2E-27’ in hex.

When reading this value, the data structure returned is based on a USB descriptor which is 18 bytes in length in
this case:

Data structure of the serial number descriptor

Descriptor length byte Should always be 0x12 (18).

Descriptor type byte Should be 0x03

Serial number ushort[8] A unicode string containing 8 characters of the hex
serial number.

This returns a 4 byte serial number that has been programmed into the IR I/O micro. Although the MAC address
of the TCP/IP version of the irNetBox can be used as unique id, future USB and serial port based versions will use
this serial number.

For the serial number ‘00-00-2E-27’, the byte data returned would be:

0x30, 0x00, 0x30, 0x00, 0x30, 0x00, 0x30, 0x00,

0x32, 0x00, 0x45, 0x00, 0x32, 0x00, 0x37, 0x00

5.2.6 [Message 9] Read the Device Version

When reading the device version, a descriptor containing many device attributes is returned. The actual payload
data is an 18 byte array, the following table giving the structure and listing the bytes of interest:

Data structure of the device descriptor

Descriptor length byte Should always be 0x12 (18).

Descriptor type byte Should be 0x01

Payload data byte[16]

 byte[0] – byte[5]

 byte[6] – byte[7] USB vendor ID for RedRat Ltd – LSB
first

 byte[8] – byte[9] Product ID – LSB first

 byte[10] – byte[11] Product version ID – LSB first

 byte[12] – byte[15]

This is a 2 byte number (major, minor version) that reflect the hardware version of that particular product,
usually reflecting PCB modifications.

The primary data of interest is the product ID, which for irNetBoxes are:

 irNetBox Product IDs

MK-I PID = 2

MK-II PID = 7

MK-III PID = 8

5.2.7 [Message 16] Allocate Memory for a Modulated Signal

This tells the IR I/O micro to allocate memory for modulated IR signal data before a modulated signal is
downloaded for output.

The reason that this memory allocation is not automatic is that data transfer between the XPort and the IR I/O
micro has no flow-control, and there is not sufficient time to dynamically allocate memory during the signal
download operation without losing some data.

Once memory has been allocated for this type of IR signal, it does not need to be de-allocated. Also, allocation
can be called multiple times without problem, the firmware tracks whether it is necessary to actually execute the
memory allocation, so it can be called before every signal download.

Note: This message must be called before the first modulated signal is downloaded or the following the output of
an IrDA-like IR signal.

5.2.8 [Message 17] Download Modulated IR Signal Data

Once memory has been allocated for a modulated IR signal, the signal data can be downloaded. The data
structure for a modulated signal is shown in the table below, with descriptions of the fields following that. Please
also refer to section 8 for further information on infrared remote control signals.

Data structure of a Modulated IR Signal

Information Structure

Intra-signal Pause uint

Modulation frequency timer count. ushort

No. of periods over which mod. freq. is measured ushort

Maximum number of lengths allowed (alloc’d) byte

Actual number of length values byte

Maximum allowed signal data size (bytes) ushort

Actual size of signal data ushort

Number of signal repeats byte

Data Arrays

Length data array. ushort[maxLengths]

Signal data array byte[]

Important: Before downloading a signal, the values that the irNetBox has for the size of the length array
(maximum number of lengths) and the signal data must be set to the same value as that given in the signal data
structure. This allows the downloaded data to be placed directly over the signal memory “footprint” in the
irNetBox. If the downloaded signal data block does not fit onto the memory footprint, then outputting the signal
will not work.

How is this best achieved? The simplest method is to always set the signal memory parameters to that of the
signal before every download – see Messages 32 and 33. On a network with a high latency or in the situation
where IR signals are being output in rapid succession, the small delay imposed by this operation may not be
acceptable. In this case, a local copy of the length and signal data array sizes can be held and kept in sync with the
irNetBox, and used for checking against the signal to be downloaded. In the vast majority of cases, the irNetBox
and signal data will both have the default values.

The RedRat signal database utility can be used to generate signal data blocks from XML signal databases for
reading into an application to download – see section 10 for further details.

5.2.8.1 Intra-Signal Pause
Period of dead time between the main and the repeat signal sections. This value is that of a counter running at
2MHz, so the length can be calculated as:

MHz
mSinlengthpause

valuecounter 2*
1000

_

As with all downloaded ushort or uint values, it has to be big-endian.

5.2.8.2 Modulation Frequency Timer Count
The timer producing the modulation/carrier frequency switching runs at 6MHz, so converting a required
frequency value in Hz (e.g. 38000Hz), the following equation is used:

Hzinfreqcarrier

MHz
valuetimer

6
65536_

As the timer_value is an up-counting re-load value, we subtract it from 65536 to give the correct timer count to
overflow.

Note: The value contained in this field is slightly different between signal download (this section) and signal
upload when capturing/learning IR signals (section 5.2.12). The reason for this is that the way the carrier
frequency is measured (for upload) is different from the way in which the carrier frequency is generated (for
signal output).

5.2.8.3 No. of Periods over Which the Modulation Frequency is Measured
For signal download, this value can be set to zero. It is used on signal input to calculate the carrier frequency.

5.2.8.4 Maximum Number of Lengths Allocated
As can be seen from section 9.1.2, length values are the “alphabet” that can be used to construct a signal. An
average IR signal has less than 8 length values, however by default the irNetBox allocates enough memory for 16
values.

Why is this value needed? This value is used on signal upload (i.e. transferring an IR signal from the irNetBox to
the PC) only so that the application knows the length of this array in the data block. The array of length values
returned as part of the signal is maxLengths in size, even if they are not all used in the signal. On signal download,
this value is not used as the memory allocated to hold this data must be configured before sending the IR signal
data – see messages 32 and 33 for details.

5.2.8.5 Actual Number of Lengths Used
The number of elements in the length data array that contain values that are used in the signal array.

5.2.8.6 Maximum Allowed Signal Data Size
This is the size of data allocated for the signal data array. The “signal data” in this context is the array of values of
the length alphabet, e.g. 1233332323… See section 9.1.2 for further details.

This value is used on signal upload (i.e. transferring an IR signal from the irNetBox to the PC) only so that the
application knows the length of this array in the data block. The array of length values returned as part of the
signal is maxLengths in size, even if they are not all used in the signal. On signal download, this value is not used as
the memory allocated to hold this data must be configured before sending the IR signal data – see messages 32
and 33 for details.

5.2.8.7 Actual Size of Signal Data
The actual length of the signal data in the returned signal data array. The signal data array follows the length
data array, so the start of this array is at:

sizeof(information_structure) + (maxLengths*sizeof(ushort))

The signal data is contains both the main and repeat signal data sections (see section 9.1.1), in the following form:

 main_signal, EOS, repeat_signal, EOS

where the EOS (end of signal) marker is a single byte of value 127 (0x7F). If there is no repeat signal data then the
two EOS markers will follow one another.

5.2.8.8 Number of Signal Repeats
When a remote control button is held down for anything more than a short press, the repeat is usually sent
multiple times – this value holding the actual number of times. When downloading a signal, this value can be
varied depending on whether a short or long button press wants to be reproduced.

5.2.8.9 Length Data Array
This is the signal “alphabet” (or look-up table) that holds the length of time values that are used to construct the
signal. Each value represents a period in ms, but converted to the number of counts of a 2MHz timer, so the value
is given by:

MHz
mSinlength

valuelength 2*
1000

__
_

The values in the length array have to be big-endian for download to the irNetBox, so may need to be converted.

5.2.8.10 Signal Data Array
The actual signal data as a byte array, for example “01223232323…”. Each value is a lookup into the length data
array.

5.2.9 [Message 18] Output Modulated IR Signal

Following signal download, the IR signal can be output, and so will be transmitted though all enabled IR outputs.

5.2.10 [Message 19] Initiate Signal Learning

This message prepares the IR I/O micro for signal input from the “learning” IR detector. This preparation
includes: Allocating signal memory if necessary and setting the CPLD device to route input from the learning IR
detector through to the micro. As with all other messages given so far, once the micro has finished preparation
for signal input it will send an ACK message back.

Following this, the host has to wait for a further input message once the remote control button has been pressed,
which will contain the IR signal data (i.e. message 21). This is the only situation in which a message is to be
expected from the irNetBox that is not sent as a direct response from a message from the host.

The signal in waiting state can only be exited through:

 A signal being received and sent to the host or
 A signal input cancel message being sent.

5.2.11 [Message 20] Cancel Signal Input

This will disable signal input, unless signal sampling has already started. The returned message will therefore be
either the signal input cancel ack. or input signal data.

5.2.12 [Message 21] Signal Data Upload

When the irNetBox returns the IR signal data during a learning operation, it is done with this message type.

The modulated IR signal data uploaded is ALMOST of the same structure as that described for download (in
section 5.2.8.) however there is one difference, which is the value for the carrier/modulation frequency. This
means that the uploaded data block cannot be directly downloaded for output without changing this one value.
The reason for this is that the way the carrier frequency is measured (for upload) is different from the way in
which the carrier frequency is generated (for signal output).

In the uploaded signal data, the carrier/modulation frequency is calculated with the following equation:

valuecountfrequencycarrier

measuredperiodsofNoMHz
Hzinfreqcarrier

___*2

where the carrier_frequency_count_value is the value from the field called “Modulation frequency timer count” in
the table in section 5.2.8 – a big-endian ushort value.

The No_of_periods_measured value is the “No. of periods over which mod. freq. is measured” entry in the table
given in section 5.2.8.

5.2.13 [Message 22] Allocate memory for IrDA data packets.

Instructs the IR I/O micro to allocate memory for an IrDA-like signal before it is downloaded for output.

The reason that this memory allocation is not automatic is that data transfer between the XPort and the IR I/O
micro has no flow-control, and there is not sufficient time to dynamically allocate memory during the signal
download operation without losing some data.

Once memory has been allocated for this type of IR signal, it does not need to be de-allocated. Also, allocation
can be called multiple times without problem, the firmware tracks whether it is necessary to actually execute the
memory allocation, so it can be called before every signal download.

Note: This message must be called before the first IrDA-like IR signal is downloaded or the following the
download/output of a standard modulated IR signal.

5.2.14 [Message 23] Download an IrDA Packet Data

Following memory allocation for an IrDA-like signal, it can be downloaded using this message. Although it is
easier to use the binary data converted directly by the Signal Database Utility for download (see section 11), the
download data structure is also given here.

An IrDA-like IR signal is made up from a set of subpackets with a pause between each one. Each subpacket itself
is made from a set of short pulses with varying time between the pulses, and in this fashion the data to be
transmitted is encoded. See section 9.2 for more detail.

Data structure of an IrDA-like Signal for Download

Information Structure

Number of subpackets ushort

Inter-subpacket pause length ushort

Data Arrays

Signal data array byte[]

Important: Before downloading a signal, the size of memory allocated for the IrDA signal data storage should be
set to be at least as large as the total signal data (data array + information structure size). This is set with the Size
of Memory parameter given in section 5.2.16.2.

5.2.14.1 Number of Subpackets
This is a big-endian 2-byte number giving the number of subpackets contained in the data array.

5.2.14.2 Inter-Subpacket Pause Length
The time between the end of one subpacket and the start of the next. Given a value in ms (typically around
20ms), the value to download is given by:

MHz
mSinlengthpause

valuedownload 2*
1000

65536_

The download value is big-endian.

5.2.14.3 Signal Data Array
Each subpacket is represented by a byte array, and these are concatenated to form the full data array.

Subpacket Data Array

Number of elements byte

Subpacket data byte[]

The Number of Elements is just the length of the subpacket data for this subpacket, and each byte in the array is
given by:

MHz
mSingappulse

valuedownload 2*
1000

256_

5.2.15 [Message 24] Output IrDA Packet

Following the download of an IrDA signal, this message will output the signal via any enabled IR outputs. This
message may be called any number of times to output the IrDA signal in memory.

5.2.16 [Message 32] Read the Signal Capture/Memory Parameters

The signal sampling algorithm can be adjusted using a number of parameters, the current values of which can be
read as a single data block using this message.

Data structure of the signal capture parameters data block

 Type Default Value

Maximum number of lengths byte 16 values

Size of memory allocated for the signal data array ushort 512 bytes

Periods of carrier wave to measure byte 8 periods

Length measurement “fuzz” byte 112

Pause measurement timeout uint 300,000

Minimum pause value byte 115

5.2.16.1 Maximum Number Of Lengths
The maximum number of length values (the signal alphabet) that a can be used in a single signal. As memory on
the irNetBox is limited, there is a trade-off in memory usage between the signal data and the length array. The
default value is 16 lengths, however for complex signals it can sometimes be necessary to increase this value
when learning a signal.

If a signal for download has a length array size different from the value set in the irNetBox, then the signal output
will not work. It is therefore necessary to check this before each signal download or keep a copy of this value on
the host, ensuring that it is kept in sync with any changes on the irNetBox.

5.2.16.2 Size of Memory for the Signal Data Array
The amount of memory used to hold the actual signal data. Default value is 512 bytes.

If a signal for download has a data array size larger than the value set in the irNetBox, then the signal output will
not work. It is therefore necessary to check this before each signal download or keep a copy of this value on the
host, ensuring that it is kept in sync with any changes on the irNetBox.

5.2.16.3 Periods of Carrier Wave to Measure
The carrier frequency is measured during the first pulse of the IR signal. The larger the number of periods used to
measure, the more accurate the result is likely to be, however some signals have short initial pulses, so in some
case it may be necessary for applications to reduce this value. Default value is 8 periods.

5.2.16.4 Length Measurement “Fuzz”
Due to the approximate nature of IR signal data, two supposedly identical pulse lengths will be slightly different.
This attribute controls the size of the length “fuzz” or maximum difference that is accepted when evaluating
whether two lengths are to be considered the same, i.e:

if ((length1 - length2 <= fuzz) {
 length2 = length1;
}

If the two values are not identical, then some primitive averaging takes place.

The units of this value are the same as the length array value units, which is counts of a 2MHz timer. To convert
this to milliseconds, use the equation:

MHz

valuecounter
msinvaluefuzz

2

1000*_

The default value is 112 (0.056mS).

5.2.16.5 Pause measurement timeout
The signal “pause” is the gap between the main signal and the repeat signal (or between repeat successive
repeats). When sampling a signal, the irNetBox listens to this period of IR inactivity for a while, and then decides
that if it goes on too long, it really must be the end of the signal. This parameter can be used to determine how
long it waits before this timeout.

The units are a count at 2MHz, so to convert this value to ms, use the same equation as given above for the
length “fuzz” value. The default value is 300,000, which corresponds to a time period of 150ms.

5.2.16.6 Minimum pause value
A very long OFF pulse within a signal could potentially be mistaken as a short pause. This parameter allows the
application to set the minimum value the intra-signal pause can take (equivalent to the maximum value on OFF
length can take).

The units are slightly indirect, being the value placed in the high byte of a 2MHz, incrementing timer. The
equation below shows this a little more clearly:

MHz

value
msinpause

2

1000*)8(65536
__min_

The default value is 115, giving a millisecond result of 18mS.

5.2.17 [Message 33] Set the Signal Capture/Memory Parameters

This message sends a data block in the form given in the previous section to configure the memory in the
irNetBox so that an IR signal can be downloaded.

5.2.18 [Message 34] Set All Outputs Using a Bit Mask (MK-II & III only)

If an IR signal is to be sent to multiple outputs, then it can be slow enabling all required ports. This command sets
all outputs to the required state in a single operation.

Each port can be in one of 4 states:

Bit mask for a single port – 2 bits

OFF 00

LOW power 01

MEDIUM power 10

HIGH power 11

The full data structure for all ports is 4 bytes, each byte containing the data for 4 output ports:

Full port bit mask structure

byte 3 byte 2 byte 1 byte 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

 Asynchronous IR Output (MK III only)
The above method of IR signal output is synchronous, so however fast the hardware it will always be limited by
the fact that an IR signal is sent for output and the irNetBox will only then respond once the output is complete.
So to support concurrent output of different IR signals, asynchronous IR output was added as shown in the
sequence diagram in Figure 3.

Control System irNetBox-III

Output IR Signal Async

ACK

Send IR Signal

IR Output Complete

Figure 3. Basic async IR output operation

The control system sends the async IR output message and receives an ACK from the irNetBox-III. It can then
continue with other tasks, and at some later point in time it will receive an IR output complete message.

To output two IR signals concurrently, the sequence shown in Figure 4 would typically take place.

Control System irNetBox-III

Output IR Signal Async 1

ACK

Send IR Signal 1

IR Output Complete 1

Ouptut IR SIgnal Async 2

ACK

Send IR Signal 2

IR Output Complete 2

Figure 4. Overlapped output of two IR signals

Some points to note about this are:

 Each async output IR message contains all data necessary for output of that signal, including which ports
are to be used at which power levels etc. This is described in detail in section 6.1.1.

 The time taken for communication is short compared with the usual time for IR output, so many async IR
output commands can be sent before IR output completion messages start being sent back to the
control computer.

 The IR Output Complete messages will not necessarily be returned in the same order as the async IR
Output Signal message, the return order will also depend on the time taken to output each IR signal. As a
result, async messages include a sequence number to correlate the returned completion message with
the original async output message. See section 6.1.2 for more detail.

 An async IR Output message may result in a NACK rather than ACK if that output command can’t be
processed for any reason. An example of this is that one or more of the requested ports are busy, as
shown in Figure 5.

Control System irNetBox-III

Output IR Signal Async - port 1

ACK

Send IR Signal 1

IR Output Complete 1

Ouptut IR SIgnal Async - port 1

NACK - port busy

Figure 5. Attempt to send two async output commands to same port

6.1.1 [Message 48] Asynchronous IR Signal Output (MK-III only)

This command instructs the box to output the IR data on the given ports at the set power. The response of the
irNetBox is to send back an immediate ACK or NACK, and if ACK’d, then send back an output complete message
at a later point in time.

Structure of the asynchronous IR signal output data block (host irNetBox-III)

Message sequence number ushort (little-endian)

Post signal delay (ms) ushort (little-endian)

Port 1 output power level byte

Port 2 output power level byte

Port 3 output power level byte

… for all 16 ports – a total of 16 bytes

IR data to output byte[]

6.1.1.1 Sequence Number
As the message response is asynchronous, the sequence number is used to pair returned messages (0x30 and
0x31) with the original outgoing message. Valid sequence number values are 0 to 65535.
NOTE: This is downloaded as a little-endian number (unlike values in the sync API), so on most x86/x64 based
computers the bytes don’t need to be swapped.

6.1.1.2 Post Signal Delay
The irNetBox-III is capable of sending IR signals asynchronously with almost no delay between them which can
cause the receiving device difficulty in recognising the IR data. As a result a default delay of 100ms is set
following the output of each IR signal, however the gap can be adjusted by setting this value, which is in ms. The
maximum value is 10,000, i.e. 10s. If the value of 0 is set, then the default of 100ms is used.
NOTE: This is downloaded as a little-endian number (unlike values in the sync API).

6.1.1.3 Port Output Power Level
A value between 1 and 100 to indicate output power on that port. If the power level is 0 for a given port, then
that port is not used in this command and is available for use by another output command.

6.1.2 [Message 48 contd] ACK/NACK Response to IR Signal Output (MK-III only)

This message is from the irNetBox-III to the host only and is used to indicate whether the async IR output
command has been accepted or not. For example if one or more of the requested output ports is in use, then the
command will be rejected. The response from the irNetBox-III is one ushort number containing the sequence
number, a byte indicating whether the command is ACK’d or NACK’d and if NACK’d then the reason for this.

Asynchronous IR signal output ACK (irNetBox-III host)

Message sequence number ushort (big-endian)

Error code byte

ACK or NACK byte

Where 1 is for ACK (command accepted) and 0 for NACK (command rejected). If a NACK is returned, the reason
is given in the error code byte.

The error codes that can be returned in a NACK are:

Error codes returned in message 48 (0x30) NACK

Decimal Hex

49 0x31 The irNetBox-III is currently busy on one or more of the requested ports

50 0x32 The irNetBox-III processor message queue is full

51 0x33 IR signal modulation frequency is too low, i.e. less than 5KHz

52 0x34 IR signal modulation frequency is too high, i.e. greater than 490KHz

53 0x35 IR signal data section size is too large (max 2048 bytes)

54 0x36 Invalid signal data - too many EOS or EOR markers in the signal data

255 0x37 Too many length values in the IR signal data

6.1.3 [Message 49] Asynchronous IR Output Complete (MK-III only)

The message sent by the irNetBox-III when the asynchronous IR output command is complete. It will only be
sent if the original IR Output message (48) was ACK’d, and contains four bytes of data, the first two being the
message sequence number of the IR Output message as a ushort (little-endian).

Asynchronous IR output complete message (irNetBox-III host)

ACK: 0x00, 0x04, 0x30, 0x01, 0xF3, 0x00, 0x01

NACK: 0x00, 0x04, 0x30, 0x01, 0xF3, 0x31, 0x00

Payload
length

Message
type

Payload

Payload

Sequence
number

Error
code

ACK

NACK

Message sequence number ushort (little-endian)

Reserved byte[2]

As has been mentioned above, these messages will not be in the order of the original IR Output commands, but
will instead be sent as soon as that particular IR signal output is complete, so are dependent upon the time taken
by that IR signal.

 Example Message Sequences Required to Perform Operations
To instruct the irNetBox to perform operations, sequences of operations are sometimes required.

 Connecting to the irNetBox

When a TCP/IP connection is established to the irNetBox, there are a few operations that can be done at this
stage to put it into its default operational state:

1) Message 5: Power on the CPLD
In a standby state, to reduce power consumption the power to the CPLD device can be turned off. When
the irNetBox is booted, the initialized state is that the CPLD has no power supplied, so before any IR
input/output operations can be performed it must be powered-up.

2) Message 7, Instruction 0: Reset the CPLD
Following power on, the CPLD should be in an initialized state where all IR outputs are off, but it is worth
sending this instruction just in case.

3) Message 7, Instruction 23: Set the red LEDs to reflect enabled IR outputs
This allows the user to observe the activity of the irNetBox. In this mode, a red LED on the front panel
lights when the corresponding IR output has been enabled. When an IR signal is then transmitted, the
red LED flashes off momentarily.

The above is just a recommendation, so does not have to be followed as given here.

 Disconnecting from the irNetBox

Recommended operations are:

1) Message 7, Instruction 0: Reset the CPLD

2) Message 6: Power off the CPLD
This ensures that while there is no active use of the irNetBox, it is in a slightly lower power state.

 Outputting an IR Signal

Before starting this sequence of operations, ensure that the CPLD device is powered-on [Message 5]. The
sequence of operations for IR signal output is:

1) Message 16: Allocate memory for IR signal data. [First time only]
Instruct the irNetBox to allocate memory for receiving the signal data. The reason that this is a separate
step is that the serial communication protocol between the XPort and the IR I/O processor has no flow
control, and allocating RAM takes a relatively long operation so would cause data loss during the
transfer if done during signal download.

2) Message 7, Instruction 0: Reset the CPLD
This will disable all IR outputs, which is necessary before selecting the IR outputs required for this
operation.

3) Message 7, Instructions 3 to 17; Enable IR Outputs

For each output to be enabled for this operation, this message should be sent with the appropriate
instruction number.

4) Message 33: Set the memory parameters to reflect that of the signal to be downloaded
This is only necessary if the default values are not being used. When the signal is downloaded as a block
of data, it must fit exactly onto the footprint of the allocated memory on the irNetBox, which is
determined by these parameters. If non-default values are being used, or have been previously set in the
irNetBox, then it is necessary to use this message to sync the values on the irNetBox with those for the
signal about to be downloaded. See section 5.2.8.

5) Message 17: Download the IR Signal Data

6) Message 18: Output the IR Signal.
This causes the IR signal to be output via all enabled outputs. It can be called as many times as this signal
is required to be output.

The sequence of instruction can of course be varied depending on the exact operation. For example, if signals are
always being output to the same set of outputs, then there is no reason to reset the CPLD and re-enable the
required outputs.

 Resetting the XS1 Processor (MK-III only)
In the MK-III irNetBox, the main processor can be remotely reset by application software if needed. The
Lantronix XPort network interface module has three general purpose IO (gpio) pins, and one of these is
connected to XS1’s reset circuitry.

Note: It is essential that all gpio pins are configured correctly for correct operation of the irNetBox, so care
should be taken when writing code to change them. If they do become set incorrectly, they can be set back to
the correct values for that particular irNetBox type by running any RedRat application (such as the IrNetBox
Manager) and connecting to the box. In the background, the RedRat core library checks, and if necessary sets,
the gpio pins on connection.

The port used for controlling the gpio pins is 0x77F0 (30704), and connections can be made to this port via TCP
or UDP. For a detailed description of the command structure to read the state of the gpio pins and set to a new
state, please see the section on the GPIO Interface in the XPort User Guide, which can be downloaded from the
Lantronix web site.

XPort GPIO Pin Settings

 Direction Active Level MK-I and MK-II State MK-III State

Pin 1 Output High Inactive Inactive

Pin 2 Output High Active Active

Pin 3 Output High Active Inactive

The table above shows the gpio pin settings, and the last two columns the default state for irNetBox operation.

To reset the XS1 processor, pin 1 is set active for a short while. In detail:

1. Set pin 1 active
2. Wait 20ms
3. Set pin 1 inactive

 An Introduction to Remote Control Signals
Although it is not necessary to understand a great deal about remote control signals to develop applications
using RedRat products, some information on IR signals may make aspects of the API clearer, especially objects
that represent the signals.

 Modulated Remote Control Signals

The vast majority of remote control signals are in this family, having a carrier wave usually (though not always) in
the frequency range 36kHz to 40kHz. Figure 6 shows the layers in such a signal. The RedRat does not attempt to
interpret or discover the coding scheme used in the signal (e.g. shift/biphase coded, space coded, RC5, RCMM,
REC-80 etc.) as knowledge of this is not needed for recognition or reproduction.

1

2

3

Main signal Repeat signal
P

L1 L2 L3

Figure 6. Layers in a Modulated Remote Control Signal.

9.1.1 Layer 1 – Main and Repeat Signals

These two sections to a signal are most commonly used to indicate the duration of a button press on a remote;
the main signal being sent once and the repeat signal sent repeatedly until the button is released. On some
remotes the repeat signal is identical to the main signal, but it can often be a different. As a result, the RedRat
stores them as separate signal sections regardless of whether they are identical or not.

There are of course variations, such as a 3 part signal (button down, hold and release) or repeating the whole
main/repeat section. The value P is the inter-packet pause length.

9.1.2 Layer 2 – Signal Envelope

This is the basically the sequences of pulses and gaps that carry the signal information. When the RedRat
samples the signal, it builds up an alphabet of the lengths of the pulses and gaps, L1, L2, L3 etc. The actual signal
data is then a series of numbers which are a lookup into the length array, i.e. 123333 is a sequence of length 1,
length 2, length 3, length 3 etc.

9.1.3 Layer 3 – Carrier/Modulation Frequency

Each IR pulse is actually a rapidly switching signal, usually around the 36kHz to 40kHz allowing detectors to
filter out background IR from this signal, so giving good transmission range and reliability. Standard remote
control detectors strip out the carrier frequency and in doing so also alter the actual length values. This does not
impact signal recognition, but in many cases are not sufficiently accurate for reliable reproduction. The RedRat
samples the raw signal, giving accurate L values and a good measurement of the carrier frequency.

 IrDA-Like Signals

Some set-top boxes use an IrDA-like remote control transmission protocol which offers some advantages over
the modulated signal type described above, such as a higher data rate, supporting multiple handsets and time-
stamping signals. Figure 7 shows part of such a signal, comprising a series of sub-packets (15 at least) separated
by quite large gaps.

Sub-packet 1 Sub-packet 2 Sub-packet 3

Figure 7. Part of an IrDA-like Signal

Figure 8. Sub-packet structure of an IrDA-like Signal.

Each sub-packet is a series of very short pulses (a couple of uS) with varying separation. Figure 8 shows the
structure of the first two sub-packets of an signal, the large inter-sub-packet pause having been removed and
replaced by the black vertical lines.

 Flash-Code Signals

These signals are not common, and generally found in older equipment. They can be considered as very similar to
modulated signals, except that the IR output when on is not modulated, rather constant.

RedRat products do not currently contain the firmware code to output these kind of signals, however this will
follow soon.

 Understanding the RedRat XML Signal Data Format
The Signal Database utility manages sets of IR signals and stores them in an XML file. If application development
using the irNetBox does not use the RedRat SDK, then it may be necessary to convert from data from the XML
files to binary signal data blocks for downloading and output. The section describes the XML format for a
ModulatedSignal object.

 <IRPacket xsi:type="RedRat3ModulatedSignal">
 <Name>Up</Name>

 <UID>pWurW50QdU+T5yX9TK0c3A==</UID>

 <ModulationFreq>37383</ModulationFreq>

 <Lengths>

 <double>9.0305</double>

 <double>4.7725</double>

 <double>0.494</double>

 <double>1.758</double>

 <double>0.622</double>

 <double>1.6644999999999999</double>

 </Lengths>

 <SigData>AAECAwIEAgQCBAIEAgQCAwIDAgQCBAIDAgQC==</SigData>

 <NoRepeats>1</NoRepeats>

 <IntraSigPause>41.573</IntraSigPause>

 <ToggleData>

 <ToggleBit>

 <bitNo>2</bitNo>

 <len1>0</len1>

 <len2>1</len2>

 </ToggleBit>

 <ToggleBit>

 <bitNo>4</bitNo>

 <len1>1</len1>

 <len2>0</len2>

 </ToggleBit>

 </ToggleData>

 </IRPacket>

The RedRat signal database utility can be used to generate signal data blocks from XML signal databases for
reading into an application to download – see section 11.

 IRPacket

All IR signal data is represented in the RedRat SDK by IRPacket objects which have a certain subclasses,
depending on signal and hardware type. The example shown is modulated signal data that has been input by the
RedRat3. The irNetBox signal input and output uses the same signal representation as the RedRat3.

 Name

The signal name as displayed in the Signal DB utility. This is metadata only, i.e. it is not needed for signal data
transfer to/from the device.

 UID

Unique identifier for the IRPacket object, given when the signal is first input. The is metadata so is not required
for data transfer to/from the device.

 ModulationFreq

The modulation/carrier frequency in Hz.

 Lengths

The length array data in ms.

 SigData

This is a byte array converted for storage in a text file. The conversion/storage format is base64 in the XML file.
Once converted back from base64, the byte array should contain a set of values such as 0, 1, 2, 2, 3, 4, 3, 4, 5. The
binary value 127 is used as the end of signal marker, used at the end of both the main and repeat signal sections.

Note: The SigData code snippet in the above XML sample has been truncated so is not a valid set of data.

 NoRepeats

The number of times the repeat signal is output.

 IntraSigPause

When a signal is output many times, the pause time between the signal output is given in ms by this value.

 ToggleData

Some signals have a few bits that alternate each time the signal is output, and this information is held in this
section, comprising one or more ToggleBit blocks.

10.9.1 ToggleBit

Represents one bit that varies in a signal, the number of that “bit” in the bitNo field. In effect, this is the offset in
the signal data array. The two values given in the len1 and len2 fields are the values to alternately place into the
signal data array each time the signal is output.

Note: Often it is not necessary to use the toggle bits on signal output as the A/V device being controlled will
respond regardless.

 Using the Signal Database Utility for Creation of Signal Data

Memory Blocks
The RedRat Signal Database Utility is the main tool for IR signal management. From version 1.15 onwards, it can
be used to convert XML signal data for a device/remote to the signal data blocks that can be directly
downloaded. For ease of storage and manipulation, the binary data is written to a file in ASCII hex
representation, i.e. the byte value 255 is represented as “FF”.

 Exporting a Device in IRNetBox Format

A “device” is a single piece of audio visual equipment in utility terminology, so there is usually one remote for
each device. To export:

 Select a device/remote in the main window
 From the Edit menu, go to Export Device/Remote and select IrNetBox Signal Data.

 The Exported Data File Format

Each IR signal in the dataset is placed on a single line, with the following fields:

<signal name> <max_num_lengths> <byte_array_in_ascii_hex>

The actual data string is a byte array, each byte having been converted to ASCII Hex, so FF is a byte with value
255 etc. This data is to be read by an application program and converted back to a byte array, it should simply be
used as the block of data in the message 17 to the irNetBox.

The byte array is created to be placed into the RAM signal footprint allocated in the irNetBox. The exact size of
this footprint depends on the parameter Maximum Number of Lengths (see section 5.2.16), i.e. the maximum
number of length values a signal can have. The value of this parameter used by the Signal DB utility is placed
before the data string, so the application program should also read this value and ensure that the irNetBox has
been set with this value before the signal is downloaded – see section 5.2.8.

By default, this value is 16 which should be large enough for most signals, so currently the Signal DB utility
creates the signal binary data assuming this value.

