
 - 1 -

 TestManager – Python API

RedRat Ltd

December 2015

For TestManager Version 4.61

 - 2 -

Contents

1. Introduction ... 3
2. TestManager Python environment .. 3
3. Importing scripts from TestManager ... 4
4. Using IronPython Outside TestManager ... 4

4.1 Enabling External Script Execution Support .. 4
4.2 Setting up a Python Script to use TestManager .. 4
4.3 Running an External Python Script .. 5
4.4 A Simple External Python Script .. 6

5. The TestManager Python API .. 6
5.1 Data retrieval functions ... 6

5.1.1 get_stb_names() .. 6
5.1.2 get_zone_names() ... 6
5.1.3 get_signal_names() ... 6
5.1.4 get_macro_names() .. 6
5.1.5 get_named_operation_names().. 6

5.2 Signal output functions ... 6
5.2.1 reserve_stbs(stb_names) .. 7
5.2.2 reserve_zone(zone_name) .. 7
5.2.3 send(name) .. 7
5.2.4 send(name, duration) .. 7
5.2.5 send(name, stb) ... 7
5.2.6 send(name, stb, duration) ... 7
5.2.7 send(name, stbs) ... 7
5.2.8 send(name, stbs, duration) .. 7

5.3 STB object .. 7
5.3.1 id .. 7
5.3.2 name .. 8

6. Example scripts .. 8
6.1 Send a signal to a known STB .. 8
6.2 Send a signal to all STBs except one .. 8
6.3 Send a signal to a zone .. 8
6.4 Send every signal to a zone ... 8

7. Parallel Execution of STB Control Operations ... 8

 - 3 -

1. Introduction
TestManager supports scripting using Python, as implemented in IronPython 2.7. Much of
the Python standard library is not included with TestManager and must be installed
separately, if required. Once IronPython is installed on your machine you must update the
options within TestManager so that the IronPython library directory can be located, as
illustrated in the following screenshot:

IronPython scripts can be run from either inside TestManager, or from outside (TestManager
V4.61 onwards).

2. TestManager Python environment
The Python environment within TestManager is much the same as that provided by
IronPython, but with two important differences. Firstly, TestManager defines a global object
tm to allow access to the TestManager API. Secondly, the import mechanism has been
extended to allow scripts defined within TestManager to be imported as normal Python
modules.

 - 4 -

3. Importing scripts from TestManager
All TestManager scripts are encapsulated within the pseudo-package scripts in the same
hierarchy as displayed by TestManager. Consider the example where we have a script called
utils within the Python folder containing the following code:

def foo():
 print 'Hello, World!'

We can call foo like so:

import scripts.Python.utils as utils
utils.foo()

Notice that the names of the folders and scripts involved must be valid Python module
names for the import to succeed, but TestManager does not enforce this. Note also that
folder and script names are case sensitive.

4. Using IronPython Outside TestManager
Python scripts can also be executed outside TestManager (from V4.61 onwards) in an almost
identical fashion to scripts running within TestManager. This allows TestManager itself to be
used as the STB and IR signal dataset management system, while gaining the benefits of
working with Python scripts placed on the file system:

 Script source code management systems can be used (Git, SVN etc.)

 Python code can be written, debugged and run from within a development
environment, such as PyCharm.

Python scripts running outside TestManager use .NET’s Windows Communication
Foundation (WCF) to communicate with TestManager, so IronPython has to be used.
4.1 Enabling External Script Execution Support
This is done in the Scripting tab of the Options dialog, enabling support and setting the port
to use. The default is port 8001.

Once this is done, the computer’s firewall may prompt you to allow communication on this
port. It is recommended that communication is only allowed on domain or private networks.
4.2 Setting up a Python Script to use TestManager
A Python script executed within TestManager is almost identical to one operating outside
TestManager, however the external execution environment has to be setup to include the
necessary files. These are:

 - 5 -

 TestManager.Core.dll – The core .NET code for the Python client to communicate
with TestManager.

 tm.py – The Python module which provides the tm API, i.e. wraps the
communication code.

 tmtasks.py – A Python class to support concurrent control of multiple STBs. See
section 7.

The simplest method to use these files is to place them in the same directory as your Python
script.

The Python client code tm.py needs to know how to connect to TestManager. It is setup to
use the default values of machine localhost and port 8001. If your setup is different, then
please edit these values near the top of the tm.py module.
4.3 Running an External Python Script
When an external Python script is started or stopped, this is listed in the main Log Output
window:

TestManager also opens a script execution log window, in a similar fashion to internal script
execution. This windows is closed as soon as the external script is terminated. Multiple
external scripts will cause multiple monitor windows to open.

 - 6 -

4.4 A Simple External Python Script

import tm

stbs = tm.reserve_stbs(['STB-1', 'STB-2', 'STB-3'])
tm.send('play', stbs)
tm.send(‘pause’, stb[0])

The folder ExamplePythonClient in the TestManager installation directory shows an example
Python script which can be executed with IronPython.

5. The TestManager Python API
All functions defined by TestManager are accessible through the tm object. The following
sections document these functions and give hints on when to use them.
5.1 Data retrieval functions
We provide several functions to retrieve information about the objects defined in
TestManager. These functions are not required to write simple scripts, where the name of
the STB, signal etc. are already known, but can be useful when writing more complicated
scripts that operate with subsets of these. For example, you might use the get_stb_names
function when writing a script that uses some or all of the STBs defined in TestManager.
5.1.1 get_stb_names()
Returns the names of the STBs defined in TestManager as a list of strings.
5.1.2 get_zone_names()
Returns the names of the zones defined in TestManager as a list of strings.
5.1.3 get_signal_names()
Returns the names of the signals defined in TestManager as a list of strings.
5.1.4 get_macro_names()
Returns the names of the macros defined in TestManager as a list of strings.
5.1.5 get_named_operation_names()
Returns the names of the named operations defined in TestManager as a list of strings.
5.2 Signal output functions
Signals can be sent either to all STBs or to a subset of them. In the latter case, this subset
must first be reserved, either by calling reserve_stbs or reserve_zones. Notice that both of
these functions return a list of STB objects. There is no function to release STBs or zones –
TestManager does this for you.

 - 7 -

5.2.1 reserve_stbs(stb_names)
Reserves one or more STBs specified by stb_names, which is a list of strings, and returns a
list of STB objects.
5.2.2 reserve_zone(zone_name)
Reserves the zone specified by zone_name, which is a string, and returns the list of STB
objects in that zone.
5.2.3 send(name)
Transmits the named operation, macro or signal specified by name, which is a string, to all
STBs.
5.2.4 send(name, duration)
Transmits the signal specified by name, which is a string, to all STBs for the given duration.
The duration is a floating point number, specified in seconds, and should be larger than 0.1s.

The duration of an IR signal is extended by TestManager through increasing the number of
signal repeats, so simulating a longer remote control button press. If the IR signal does not
have repeat data, or the duration given causes the number of repeats to exceed 255, then
an error will be generated. This only applies to signals, and not to named operations or
macros.
5.2.5 send(name, stb)
Transmits the named operation, macro or signal specified by name, which is a string, to one
stb object.
5.2.6 send(name, stb, duration)
Transmits the signal specified by name, which is a string, to one stb object for the given
duration. See section 5.2.4 for more details on the duration parameter.
5.2.7 send(name, stbs)
Transmits the named operation, macro or signal specified by name, which is a string, to the
list of STB objects stbs.
5.2.8 send(name, stbs, duration)
Transmits the signal specified by name, which is a string, to the list of STB objects stbs for
the given duration. See section 5.2.4 for more details on the duration parameter.

5.3 STB object
The STB object has the following properties, which must not be changed.
5.3.1 id
The ID of this STB, used internally by TestManager.

 - 8 -

5.3.2 name
The name of the STB.

6. Example scripts
6.1 Send a signal to a known STB

stbs = tm.reserve_stbs(['My STB'])
tm.send('play', stbs)

6.2 Send a signal to all STBs except one

all_stbs_names = tm.get_stb_names()
my_stbs = [stb for stb in all_stbs_names if stb != 'STB-8']
stbs = tm.reserve_stbs(my_stbs)
tm.send('play', stbs)

6.3 Send a signal to a zone

rack1 = tm.reserve_zone('Rack 1')
tm.send('play', rack1)

6.4 Send every signal to a zone

rack1 = tm.reserve_zone('Rack 1')
for signal in tm.get_signal_names():
 tm.send(signal, rack1)

7. Parallel Execution of STB Control Operations
Generally, multiple STBs are controlled by sending the same sequence of control signals to a
list of them. However, it can sometimes be necessary to send different sets of commands to
different STBs, in effect doing multiple, different operations at the same time.

The .NET framework has a lot of support for these kind of concurrent operations, one form
of this support being the Task Parallel Library. This can get quite complex to use, so parts of
it have been wrapped my the tmtasks.py module to give simple but effective use in Python.

To use it in code, take the following steps:

1. Import the tmtasks module:
import tmtasks

 - 9 -

2. Create a tmtasks object:
tmtasks = tmtasks.TmTasks()

3. Create a function which you want to call multiple times, for example once for each
STB in a list.

4. Call this function multiple times:
for i in range(len(stbs)):

 tmtasks.startTask(lambda x=stbs[i]: sendSeq(x))
These functions will then be started up in the background. The slightly strange
syntax: 'x=param' is needed to capture the actual parameter instance. See lambda
function closures.

5. Wait for completion of all the tasks:

tmtasks.waitAll()

When printing out information from functions being run in parallel, the text from different
functions can become mixed up, i.e. is not thread safe. To get round this, use the tmtasks
print mechanism which ensures that each line is printed sequentially:

tmtasks.printMessage("Starting output to " + stb.name)

