
Using	RedRat3	on	Linux	

Introduction
This guide is intended to explain how to use RedRat3 hardware on Linux. It is assumed that the

reader is familiar with Linux systems, capable of installing software on them and comfortable

executing commands from a terminal.

Most of the tools described herein were not written by us, so this information may be inaccurate,

out of date, or just plain wrong. We encourage the reader to verify that our examples are correct by

reading the man pages before use.

Command examples are written in italics.

Prerequisites

Recent kernel

Using the RedRat3 requires the RedRat3 driver to be installed. This has been included in the Linux

kernel since version 3.3, so if you have a more recent kernel than this you’re all set. We maintain

instructions for older kernels on our website.

ir-keytable

This program is “a swiss-knife tool to handle Remote Controllers”. It can be used to verify device

functionality and to adjust various settings for decoding signals and mapping remote control key

presses to events.

Verifying that the RedRat3 has been detected
Run ir-keytable to verify that the RedRat3 has been found and that the correct driver has been

loaded. The response should look something like this:

Found /sys/class/rc/rc0/ (/dev/input/event6) with:

 Driver redrat3, table rc-hauppauge

The exact text doesn’t matter, so long as it found something with a redrat3 driver. If that didn’t

work, check the output of the kernel message log with dmesg. Also make sure that the RedRat3 is

actually plugged in!

Sending and receiving signals with LIRC

Installation

The easiest way to install LIRC is to use the package manager or software repository for your

distribution. If you are prompted to select a driver to use following the installation, pick the option

of “none”, “other” or something similar. As mentioned earlier, the driver for the RedRat3 is included

in the kernel so it is not necessary to configure LIRC to use a special driver.

We neither recommend nor support building LIRC from source code.

Architecture

Most of the tools that come with LIRC communicate with lircd, the LIRC daemon. lircd has sole

access to the hardware and is also responsible for decoding IR signals. This architecture allows

multiple tools to be run at the same time by normal users.

Device files

Each RedRat3 will have a corresponding device file under /dev. The naming convention varies slightly

between distributions, but the default name for a single device is usually /dev/lirc or /dev/lirc0. Run

ls /dev/lirc* to see which device(s) you have and make note. If you have none, check the kernel

message logs (run dmesg) to see what went wrong. Also double check that the RedRat3 really is

plugged in.

Starting and stopping lircd

If you installed LIRC through a package manager it probably set up a system service or boot script to

start lircd automatically. To verify that lircd is running, run pidof lircd in a terminal. If it returns a

number, lircd is running.

Note that running more than one instance of lircd at the same time is not allowed because it needs

dedicated access to the hardware. Attempting to start a second instance of lircd will produce an

error message.

To stop lircd you can either stop the service, if there is one, or do killall lircd as root.

To start lircd as a background process, simply run lircd as root. To have lircd use a specific device,

e.g. /dev/lirc0, run it with lircd –d /dev/lirc0 . To run it as a foreground process, allowing you to view

status messages, add the –n switch.

Creating a configuration file

LIRC requires a configuration file to be able to transmit or receive IR signals. This file essentially maps

IR signals to button events. The easiest way to get one is to just download it. A list can be found here

http://lirc.sourceforge.net/remotes/ , and even if you can’t find one that works perfectly, it’s a good

place to start.

LIRC comes with a tool called irrecord for generating configuration files. irrecord is unlike the other

tools in that it accesses the hardware directly, so it cannot be used while lircd is running. Run it as

root with irrecord my-config-file to have it write a configuration file to my-config-file. As with lircd

you can specify which device to use with –d . irrecord outputs lots of helpful text as it runs, so just

follow its instructions.

There are times when irrecord simply doesn’t work, or it claims to have worked but the resulting

configuration file isn’t right. If this is the case, you might try the Signal Database Utility available

from our website. This is only available on Windows, but it allows signal capture and export to the

Linux LIRC format. Usage is documented on our website.

Testing a configuration file

Once you have a configuration file it’s a good idea to see if it actually works! lircd accepts the path to

a configuration file as an argument, so you can run lircd manually with lircd –n my-config-file to see

what happens. The –n switch prevents lircd from becoming a daemon so you can read its output in

the terminal. Make sure there are no errors listed here, particularly anything about a bad

configuration file.

Run irw in another terminal to output every signal lircd successfully decoded. Also keep an eye on

the output from lircd. Each button press on your remote should produce one or more lines from irw.

If it doesn’t, you may need to edit the tolerances in the configuration file (aeps and eps), or maybe

go back a step and generate a new configuration file.

Updating the LIRC configuration file

The default location for the LIRC configuration file is /etc/lirc/lircd.conf . You can either overwrite

this file with your new configuration file merge the two together by appending the contents of your

new file. Merging is useful if you’ve just recorded a new remote but don’t want to lose your existing

ones. Editing /etc/lirc/lircd.conf will require root access.

Once you’ve edited lircd.conf you’ll probably need to restart lircd for the changes to take effect.

Listing signals

If you ever forget which remotes and signals have been configured, or you want to check that your

new configuration file has been loaded properly, run irsend LIST “” “” to print the list of remotes in

the configuration file. You can also use irsend LIST remote-name “” to list the signals configured for a

given remote.

Transmitting signals

irsend can be used to transmit signals. To send a signal once, use irsend SEND_ONCE remote-name

signal-name. It is also possible to send multiple signals consecutively or to repeat signals until

stopped – see the man page for details.

If running this command seems to have no effect, check that the RedRat3 actually transmitted a

signal. The easiest way to do this is to view the front of the device with a mobile phone camera,

webcam or similar device. IR signals should appear as bright flashes (unless your camera has

excellent IR filtering). There is a red LED inside the device that blinks when transmitting, though this

can be difficult to see through the black casing.

If you find no evidence that the RedRat3 transmitted anything then something has gone wrong –

check the kernel message logs and try running lircd with –n so you can observe any error messages it

may produce. If the RedRat3 appears to be transmitting but the signals are not being recognised,

your configuration file may not be quite right. Try creating it again as described previously.

Alternatively, if you have another RedRat3, record the transmitted signal with our Signal Database

Utility and see if it matches what you expect.

